Michał Hapka

Ph.D.

E-mail Phone+48 22 5526382 Room506 AddressL. Pasteura 1 St.
02-093 Warsaw
Poland
GammCor program developed by the Quantum Chemistry Group, Institute of Physics, Lodz University of Technology

Education:

  • 2015 Ph.D. in Quantum Chemistry, University of Warsaw, Poland
  • 2011 - 2015 - Joint UW and WUT International Ph.D. Programme
  • 2011 - M.Sc. in Biotechnology (with honours), Faculty of Biology, University of Warsaw, Poland
  • 2010 - M.Sc. in Quantum Chemistry (with honours), Faculty of Chemistry, University of Warsaw, Poland
  • 2008 - B.Sc in Biotechnology (with honours), Faculty of Biology, University of Warsaw, Poland
  • 2005-2011 - Inter-faculty Individual Studies in Mathematics and Natural Science (Chemistry + Biotechnology), University of Warsaw, Poland

Research interest:

  • Interactions in open-shell systems
  • Multireference methods
  • Symmetry-adapted perturbation theory

List of scientific publications:

  • D. Drwal, M. Matoušek, P. Golub, A. Tucholska, M. Hapka, J. Brabec, L. Veis, K. Pernal
    The role of spin polarization and dynamic correlation in singlet-triplet gap inversion of heptazine derivative
    arXiV link
    JCTC (2023) doi: 10.1021/acs.jctc.3c00781
  • M. Hapka, A. Krzemińska, M. Modrzejewski, M. Przybytek, K. Pernal
    Efficient calculation of dispersion energy for multireference systems with Cholesky decomposition. Application to excited-state interactions
    J. Phys. Chem. Lett. 14 6895-6903 (2023)
  • E. Posenitskiy, V. G. Chilkuri, A. Ammar, M. Hapka, K. Pernal, R. Shinde, E. J. Landinez Borda, C. Filippi, K. Nakano, O. Kohulák, S. Sorella, P. de Oliveira Castro, W. Jalby, P. López Ríos, A. Alavi, A. Scemama
    TREXIO: A File Format and Library for Quantum Chemistry
    J. Chem. Phys. 158, 174801 (2023)
  • T. Korona, M. Hapka, K. Pernal, K. Patkowski
    How to make symmetry-adapted perturbation theory more accurate?
    Adv. Quantum Chem., 87, 37-72 (2023)
  • M. Matoušek, M. Hapka, L. Veis, K. Pernal
    Toward more accurate adiabatic connection approach for multireference wave functions
    J. Chem. Phys. 158, 054105 (2023)
  • M. R. Jangrouei, A. Krzemińska, M. Hapka, E. Pastorczak, K. Pernal
    Dispersion interactions in exciton-localised states. Theory and applications to π − π* and n − π* excited states
    J. Chem. Theory Comput. 18, 6, 3497–3511 (2022)
  • M. Hapka, K. Pernal, H. J. Aa. Jensen
    An efficient implementation of time-dependent linear-response theory for strongly orthogonal geminal wave function models
    J. Chem. Phys. 156, 174102 (2022)
  • D. Drwal, P. Beran, M. Hapka, M. Modrzejewski, A .Sokół, L. Veis, K. Pernal
    Efficient adiabatic connection approach for strongly correlated systems. Application to singlet-triplet gaps of biradicals
    J. Phys. Chem. Lett. 13, 20, 4570–4578 (2022)
  • P. Beran, M. Matoušek, M. Hapka, K. Pernal, L. Veis
    Density matrix renormalization group with dynamical correlation via adiabatic connection
    J. Chem. Theory Comput. 17 (12) 7575-7585 (2021)
  • K. Pernal, M. Hapka
    Range-separated multiconfigurational density functional theory methods
    WIREs Comput Mol Sci. e1566 (2021)
  • M. Hapka, M. Przybytek, K. Pernal
    Symmetry-adapted perturbation theory based on multiconfigurational wave function description of monomers
    J. Chem. Theory Comput. 17 (9) 5538-5555 (2021)
  • K. Pernal, M. Hapka
    Density Functional Theory: In pursuit of universality
    Nat Rev Chem (2021)
  • K. Madajczyk, P. Żuchowski, F. Brzęk, Ł. Rajchel, D. Kędziera, M. Modrzejewski, M. Hapka
    Dataset of noncovalent intermolecular interaction energy curves for 24 small high-spin open-shell dimers
    J. Chem. Phys. 154, 134106 (2021)
  • M. Hapka, A. Krzemińska, K. Pernal
    How much dispersion energy is included in the multiconfigurational interaction energy?
    J. Chem. Theory Comput. 16 (10) 6280-6293 (2020)
  • M. Hapka, O. Gritsenko, K. Pernal
    Local Enhancement of Dynamic Correlation in Excited States:
    Fresh Perspective on Ionicity and Development of Correlation Density Functional Approximation Based on the On-top Pair Density
    J. Phys. Chem. Lett., 10.1021/acs.jpclett.0c01616 (2020)
  • E. Maradzike, M. Hapka, K. Pernal, A. Eugene DePrince
    Reduced density matrix driven CASSCF corrected for dynamic correlation from the adiabatic connection
    J. Chem. Theory Comput. 16 (7) 4351-4360 (2020)
  • M. Hapka, K. Pernal, O. Gritsenko
    Molecular multibond dissociation with small complete active space augmented by correlation density functionals
    J. Chem. Phys. 152, 204118 (2020)
  • M. Hapka, M. Modrzejewski, G. Chałasiński, M. M. Szczęśniak
    Assessment of SAPT(DFT) with meta-GGA functionals
    J. Mol. Model. 26, 102 (2020)
  • M. Hapka, E. Pastorczak, A. Krzemińska, K. Pernal
    Long-range-corrected multiconfiguration density functional with the on-top pair density
    J. Chem. Phys. 152, 094102 (2020)
  • M. Hapka, M. Przybytek, K. Pernal
    Second-order exchange-dispersion energy based on multireference description of monomers
    J. Chem. Theory Comput. 15 (12) 6712-6723 (2019)
  • M. Hapka, M. Jaszuński
    The effect of weak intermolecular interactions on the NMR shielding constant in N2
    Magn Reson Chem, 58 (3) 245-248 (2019)
  • E. Pastorczak, M. Hapka, L. Veis, K. Pernal
    Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical
    J. Phys. Chem. Lett. 10 (16) 4668-4674 (2019)
  • P. A. Guńka, M. Hapka, M. Hanfland, G. Chałasiński, J. Zachara
    Towards Heterolytic Bond Dissociation of Dihydrogen: the Study of Hydrogen in Arsenolite under High Pressure
    J. Phys, Chem. C 123 (27) 16868-16872 (2019)
  • K. N. Jarzembska, M. Hapka, R. Kamiński, W. Bury, S. E. Kutniewska, D. Szarejko, M. M. Szczęśniak
    On the Nature of Luminescence Thermochromism of Multinuclear Copper(I) Benzoate Complexes in the Crystalline State
    Crystals, 9(1), 36 (2019)
  • M. Hapka, M. Przybytek, K. Pernal
    Second-order dispersion energy based on multireference description of monomers
    J. Chem. Theory Comput.15 (2) 1016-1027 (2019)
  • P. A. Guńka, M. Hapka, M. Hanfland, M. Dranka, G. Chałasiński, J. Zachara
    How and Why Helium Permeates Non-porous Arsenolite Under High Pressure?
    ChemPhysChem 19 (7) 857-864 (2018)
  • M. Hapka, P. S. Żuchowski
    Interactions of Atoms and Molecules in Cold Chemistry
    in: Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero.
    Ed. O. Dulieu and A. Osterwalder, ISBN: 978-1-78262-597-1
  • E. Pastorczak, J. Shen, M. Hapka, P. Piecuch, K. Pernal
    Intricacies of van der Waals Interactions in Systems with Elongated Bonds Revealed by Electron-Groups Embedding and High-Level Coupled-Cluster Approaches
    J. Chem. Theory Comput. 13 (11), 5404-5419 (2017)
  • M. Hapka, Ł. Rajchel, M. Modrzejewski, R. Schäffer, G. Chałasiński, M. M. Szczęśniak
    The nature of three-body interactions in DFT: exchange and polarization effects
    J. Chem. Phys. 147, 084106 (2017)
  • J. Kłos, M. Hapka, G. Chałasiński, Ph. Halvick, and T. Stoecklin
    Theoretical study of the buffer-gas cooling and trapping of CrH(X6Σ+) by 3He atoms
    J. Chem. Phys. 145, 214305 (2016)
  • K. Jachymski, M. Hapka, J. Jankunas, A. Osterwalder
    Experimental and theoretical studies of low energy Penning ionization of NH3, CH3F, and CHF3
    ChemPhysChem 17, 2776 (2016)
  • M. Modrzejewski, M. Hapka, G. Chałasiński, M. M. Szczęśniak
    Employing range separation on the meta-GGA rung: New functional suitable for both covalent and noncovalent interactions
    J. Chem. Theory Comput., 12 (8), 3662-3673 (2016)
  • S. Yourdkhani, M. Chojecki, M. Hapka, T. Korona
    On the Interaction of Boron-Nitrogen Doped Benzene Isomers with Water
    J. Phys. Chem. A, 120 (31), 6287-6302 (2016)
  • J. Jankunas, K. Jachymski, M. Hapka, A. Osterwalder
    Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3
    J. Chem. Phys. 144, 221102 (2016)
  • M. Hapka, M. Dranka, K. Orłowska, M. M. Szczęśniak, G. Chałasiński, J. Zachara
    Noncovalent interactions determine the conformation of aurophilic complexes with 2-Mercapto-4-methyl-5-thiazoleacetic acid ligands
    Dalton Trans. 44, 13641 (2015)
  • J. Jankunas, K. Jachymski, M. Hapka, A. Osterwalder
    Observation of Orbiting Resonances in He(3S1)+NH3 Penning Ionization
    J. Chem. Phys. 142, 164305 (2015)
  • M. Hapka, Ł. Rajchel, M. Modrzejewski, G. Chałasiński, M. M. Szczęśniak
    Tuned range-separated hybrid functionals in the symmetry-adapted perturbation theory
    J. Chem. Phys. 141, 134120 (2014)
  • J. V. Koppen, M. Hapka, M. Modrzejewski, M. M. Szczęśniak, G. Chałasiński
    DFT for gold-ligand interactions: Separating true effects from artifacts
    J. Chem. Phys. 140, 244313 (2014)
  • J. Jankunas, B. Bertsche, K. Jachymski, M. Hapka, A. Osterwalder
    Dynamics of gas phase Ne* + NH3 and Ne* + ND3 Penning ionisation at low temperatures
    J. Chem. Phys. 140, 244302 (2014)
  • M. Hapka, J. Kłos, T. Korona, G. Chałasiński
    Theoretical Studies of Potential Energy Surface and Bound States of the Strongly Bound He(1S)–BeO (1Σ+) Complex
    J. Phys. Chem. A 177, 6657 (2013)
  • M. Hapka, G. Chałasiński, J. Kłos, P. S. Żuchowski
    First-principle interaction potentials for metastable He(3S) and Ne(3P) with closed-shell molecules: Application to Penning-ionizing systems
    J. Chem. Phys. 139, 014307 (2013)
  • M. Hapka, P. S. Żuchowski, M. M. Szczęśniak, G. Chałasiński
    Symmetry-adapted perturbation theory based on unrestricted Kohn-Sham orbitals for high-spin open-shell van der Waals complexes
    J. Chem. Phys. 137, 164104 (2012)
  • J. V. Koppen, M. Hapka, M. M. Szczęśniak, G. Chałasiński
    Optical absorption spectra of gold clusters Aun (n = 4, 6, 8, 12, 20) from long-range corrected functionals with optimal tuning
    J. Chem. Phys. 137, 114302 (2012)
  • E. R. Sayfutyarova, A. A. Buchachenko, M. Hapka, M. M. Szczęśniak, G. Chałasiński
    Interactions of ThO (X) with He, Ne and Ar from the ab initio coupled cluster and symmetry adapted perturbation theory calculations
    Chem. Phys. 339, 50 (2012)
  • Ł. Rajchel, P. S. Żuchowski, M. Hapka, M. Modrzejewski, M. M. Szczęśniak, G. Chałasiński
    A density functional theory approach to noncovalent interactions via interacting monomer densities
    Phys. Chem. Chem. Phys. 12, 14686 (2010)
  • A. Kiersztan, A. Baranska, M. Hapka, M. Lebiedzinska,K. Winiarska,M. Dudziak, J. Bryła
    Differential action of methylselenocysteine in control and alloxan-diabetic rabbits
    Chem Biol Interact. 177, 161 (2009)

NCN grant Sonata 17:

Project Title : Symmetry-adapted perturbation theory for excited-state complexes
Project Number: 2021/43/D/ST4/02762

Project description :


Noncovalent interactions determine both the structure and properties of molecular aggregates ranging from clusters and supramolecular nanostructures, to biosystems and condensed phases. Consequently, theoretical methods for noncovalent interactions in excited-state complexes are essential for understanding of photoactive materials and their in-silico-driven design for technological applications, such as organic light-emitting diodes or fluorescent probes. Interactions in complexes involving excited states pose a serious challenge for ab initio methods as compared to ground states. First, they require accounting for the multiconfigurational character of excited state wave functions and going beyond an independent-electron approximation. Second, resonance interactions, which are unique for excited states, demand treatment of degenerate states. The latter challenge has recently been addressed with energy decomposition schemes (EDAs). However, these approaches are based on single-reference linear response theories and are seriously limited by altogether missing or recovering only part of effects which are crucial for an accurate description of noncovalent interactions.

The symmetry-adapted perturbation theory (SAPT) is one of the most successful methods for interaction energy calculations in noncovalently bound complexes. In SAPT the essential components of the interaction: electrostatic, exchange (Pauli repulsion), induction and dispersion energies, are obtained directly from monomer properties. SAPT based on density functional theory (DFT) generates potential energy surfaces of accuracy on a par with high-level coupled cluster results at a much lower computational cost. This has resulted in numerous applications of the method, the most spectacular ones being structure prediction of organic crystals. Unfortunately, DFT-based SAPT is a ground state theory, and by construction, it is not applicable to systems in electronically excited states.

The aim of this project is to develop a SAPT variant for the description of noncovalent interactions in excited state complexes. The proposed method will be based on range-separated multiconfigurational density functional theory. This approach rigorously combines the accuracy of DFT with multiconfigurational wave functions. In its degenerate formulation the new SAPT method will extend to excimers and exciplexes, i.e., systems with resonance interactions that currently are beyond the capabilities of all existing SAPT formulations. Compared to EDAs, it will offer a well-defined and accurate description of the dispersion energy and the possibility to target multireference states, including excimers and exciplexes.
The novel method will provide an efficient description of large systems, in particular of organic light-emitting crystals and optoelectronic materials. The synthesis of such materials can be theory-driven, and these studies will help to establish an intrinsic connection between the structure of light-emitting molecular assemblies and their optical properties.


Published results:
  • M. Hapka, A. Krzemińska, M. Modrzejewski, M. Przybytek, K. Pernal
    Efficient calculation of dispersion energy for multireference systems with Cholesky decomposition. Application to excited-state interactions
    J. Phys. Chem. Lett. 14 6895-6903 (2023). Accompanying Zenodo repository can be found here.

The SAPT suite of programs developed during the project is available in the GammCor code.