Michał Lesiuk

Ph.D.

E-mail Phone+48 22 5526388 Room538 AddressL. Pasteura 1 St.
02-093 Warsaw
Poland

Education:

  • since 2018 - Assistant Researcher at the Faculty of Chemistry, University of Warsaw
  • 2018 - Ph.D. in Quantum Chemistry (with honours), University of Warsaw, Poland
  • 2013-2017 - Ph.D. Studies in Quantum Chemistry, Faculty of Chemistry, University of Warsaw
  • 2013 - M.Sc. in Quantum Chemistry (with honours), Faculty of Chemistry, University of Warsaw, Poland
  • 2011-2013 - Inter-faculty Individual Studies in Mathematics and Natural Science (Physics + Chemistry), University of Warsaw, Poland
  • 2011 - B.Eng. in Chemical Technology (with honours), Faculty of Chemistry, Warsaw University of Technology, Poland
  • 2008-2011 - Bachelor Studies in Chemical Technology, Warsaw University of Technology, Poland

Research interests:

  • Approximate coupled cluster methods
  • Slater-type orbitals as a basis set in quantum chemical calculations
  • Conceptual density functional theory
  • Explicitly correlated calculations in quantum chemistry
  • Quantum electrodynamics effects in many-electron systems

Information for students (in Polish only):


Terminy konsultacji: poniedziałek 17.00-19.00.
W przypadku konsultacji w innym terminie prosiłbym o mailowe umówienie się.

Elementy Termodynamiki i Fizyki Statystycznej


    Poniżej dostępne są wyniki kartkówek i kolokwiów:
    grupa 1 (poniedziałek 13.15-15.45)

    grupa 2 (środa 16.15-17.45)

    Skrypt autorstwa dra Piszczatowskiego do ćwiczeń jest dostępny tutaj.
    Przykładowe kolokwium 1 można znaleźć tutaj.

Matematyka A - ćwiczenia


    Dotyczy grupy nr 6 (poniedziałek 15.15-16.45, wtorek 13.30-15.00).
    Treści zadań domowych:

    Praca domowa 1 - logarytmy, funkcja wykładnicza, trygonometria.
    Praca domowa 2 - granice ciągów.

    Wyniki prac domowych dostępne są tutaj.

Metody numeryczne i statystyczne w chemii


Publications:

(in reverse chronological order)
view at Google Scholar or ORCID pages
  1. M. Lesiuk
    Bethe logarithm in the mean field approximation
    manuscript in preparation
  2. M. Lesiuk
    Implementation of the full CCSDT electronic structure model with tensor decompositions
    submitted, preprint available on arXiv
  3. M. Lesiuk
    Communication: A straightforward a posteriori method for reduction of density-fitting error in coupled-cluster calculations
    submitted, preprint available on arXiv
  4. M. S. Szczygiel, M. Lesiuk, R. Moszynski
    Theoretical description of the ionization processes with a discrete basis set representation of the electronic continuum
    submitted, preprint available on arXiv
  5. R. Balawender, M. Lesiuk, F. De Proft, C. Van Alsenoy, and P. Geerlings
    Exploring Chemical Space with Alchemical Derivatives: Alchemical Transformations of H through Ar and its Ions as a Proof of Concept.
    accepted in Phys. Chem. Chem. Phys., in press.
  6. M. Lesiuk and B. Jeziorski
    Complete basis set extrapolation of electronic correlation energies using the Riemann zeta function
    J. Chem. Theory Comput. 15, 5398 (2019)
  7. M. Lesiuk and B. Jeziorski
    Size consistency and counterpoise correction in explicitly correlated calculations of interaction energies and interaction-induced properties
    Phys. Rev. A 99, 032712 (2019)
  8. M. Lesiuk
    Efficient singular-value decomposition of the coupled-cluster triple excitation amplitudes
    J. Comp. Chem. 40, 1319 (2019)
  9. M. Lesiuk, M. Przybytek, J. G. Balcerzak, M. Musial, and R. Moszynski
    Ab initio potential energy curve for the ground state of beryllium dimer
    J. Chem. Theory Comput. 15, 2470 (2019)
  10. K. Amini at al.
    Symphony on Strong Field Approximation
    accepted in Reports on Progress in Physics, in press.
  11. M. Przybytek and M. Lesiuk
    Correlation energies for many-electron atoms with explicitly correlated Slater functions
    Phys. Rev. A 98, 062507 (2018)
  12. R. Balawender, M. Lesiuk, F. De Proft, and P. Geerlings
    Exploring Chemical Space with Alchemical Derivatives: BN Simultaneous Substitution Patterns in C60
    J. Chem. Theory Comput. 14, 1154 (2018)
  13. J. G. Balcerzak, M. Lesiuk, and R. Moszynski
    Calculation of Araki-Sucher correction for many-electron systems
    Phys. Rev. A 96, 052510 (2017)
  14. M. Lesiuk, A. Tucholska, and R. Moszynski
    Combining Slater-type orbitals and effective core potentials
    Phys. Rev. A 95, 052504 (2017)
  15. A. Tucholska, M. Lesiuk, and R. Moszynski
    Transition moments between excited electronic states from the Hermitian formulation of the coupled cluster quadratic response function
    J. Chem. Phys. 146, 034108 (2017)
  16. M. Lesiuk
    Calculation of STOs electron repulsion integrals by ellipsoidal expansion and large-order approximations
    J. Math. Chem. 54, 572 (2016)
  17. T. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musial, P. Massignan, M. Lewenstein, and R. Moszynski
    Many interacting fermions in a one-dimensional harmonic trap: a quantum-chemical treatment
    New J. Phys. 17, 115001 (2015)
  18. T. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musial, R. Moszynski, M. Lewenstein, and P. Massignan
    Crossover between few and many fermions in a harmonic trap
    Phys. Rev. A 92, 061601R (2015)
  19. M. Silkowski, M. Lesiuk, and R. Moszynski
    Calculation of the molecular integrals with the range-separated correlation factor
    J. Chem. Phys. 142, 124102 (2015)
  20. M. Lesiuk, M. Przybytek, M. Musial, B. Jeziorski, and R. Moszynski
    Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. III. Case study of the beryllium dimer
    Phys. Rev. A 91, 012510 (2015)
  21. M. Lesiuk and R. Moszynski
    Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. II. Neumann expansion of the exchange integrals
    Phys. Rev. E 90, 063319 (2014)
  22. M. Lesiuk and R. Moszynski
    Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. I. Atomic, Coulomb and hybrid integrals
    Phys. Rev. E 90, 063318 (2014)
  23. M. Lesiuk, B. Jeziorski, and R. Moszynski
    On the large interelectronic distance behavior of the correlation factor for explicitly correlated wave functions
    J. Chem. Phys. 139, 134102 (2013)
  24. R. Balawender, M. A. Welearegay, M. Lesiuk, F. De Proft, and P. Geerlings
    Exploring chemical space with the alchemical derivatives
    J. Chem. Theory Comput. 9, 5327 (2013)
  25. M. Lesiuk and J. Zachara
    Molecular electrostatic potential at the atomic sites in the presence of effective core potentials
    J. Chem. Phys. 138, 074107 (2013)
  26. M. Lesiuk and R. Moszynski
    Analytical two-center integrals over Slater geminal functions
    Phys. Rev. A 86, 052513 (2012)
  27. M. Modrzejewski, M. Lesiuk, Ł. Rajchel, M. M. Szczęśniak, and G. Chałasiński
    A first-principles-based correlation functional for harmonious connection of short-range correlation and long-range dispersion
    J. Chem. Phys. 137, 204121 (2012)
  28. M. Lesiuk, R. Balawender, and J. Zachara
    Higher order alchemical derivatives from coupled perturbed self-consistent field theory
    J. Chem. Phys. 136, 034104 (2012)
  29. I. Dranka, M. Kubisiak, I. Justyniak, M. Lesiuk, D. Kubicki, and J. Lewiński
    Reactions of ZnR2 compounds with dibenzoyl: characterisation of the alkyl-transfer products and a striking product-inhibition effect
    Chem. Eur. J. 17, 12713 (2011)
  30. J. Lewiński, M. Dutkiewicz, M. Lesiuk, W. Śliwiński, K. Zelga, I. Justyniak, and J. Lipkowski
    Solid-state conversion of the solvated dimer [{tBuZn(μ-OtBu)(THF)}2] into a long overlooked trimeric [{tBuZnOtBu}3] species
    Angew. Chem. Int. Ed. 49, 8266 (2010)