32 krystalograficzne grupy punktowe

Symbole grup podane są w notacji Hermanna-Mauguina (jest to tzw. symbolika międzynarodowa, zalecana przez Międzynarodową Unię Krystalograficzną) oraz (w nawiasach) w notacji Schönfliesa, stosowanej w spektroskopii molekularnej. Pod każdym symbolem podana jest projekcja sferyczna zawierająca elementy symetrii danej grupy oraz ogólny zbiór punktów symetrycznie równoważnych (liczebność tego zbioru równa jest rzędowi grupy).

1. Rodzina grup wywodzących się z grupy 1 (układ trójskośny)

$$
1\left(C_{1}\right)
$$

$\overline{1}\left(C_{i}, S_{2}\right)$

2. Rodzina grup wywodzących się z grupy 2 (układy: jednoskośny i rombowy)

3. Rodzina grup wywodzących się z grupy 3 (układ trygonalny)

4. Rodzina grup wywodzących się z grupy 4 (układ tetragonalny)

5. Rodzina grup wywodzących się z grupy 6 (układ heksagonalny)

6. Rodzina grup wywodzących się z grupy 23 (układ regularny)

Niekrystalograficzne grupy punktowe skończonego rzędu

1. Rodziny grup wywodzących się:
(a) z grupy $5(7,9, \ldots)$ - o strukturze analogicznej do rodziny grupy 3 ;
(b) z grupy $8(12,16, \ldots)$ - o strukturze analogicznej do rodziny grupy 4 ;
(c) z grupy $10(14,18, \ldots)$ - o strukturze analogicznej do rodziny grupy 6.
2. Grupy ikosaedryczne

Grupy punktowe nieskończonego rzędu

1. Grupa symetrii cząsteczki liniowej heterojądrowej $C_{\infty v}$
2. Grupa symetrii cząsteczki liniowej homojądrowej $D_{\infty h}$
3. Grupa symetrii atomu $O(3)$

Pięć wielościanów foremnych (bryły platońskie)


```
czworościan
ściany: 4 trójkąty równoboczne wierzchołki: 4 krawędzie: 6
```


sześcian
ściany: 6 kwadratów wierzchołki: 8

ośmiościan
ściany: 8 trójkątów równobocznych ำ 3 ำ wierzcholki: f krawẹdzie: 12

dwunastościan
ściany: 12 pięciokątów foremnych $\overline{5} 3 \mathrm{~m}$ wierzchołki: 20
krawẹdzie: 30

dwudziestościan
ściany: 20 trójkątów równobocznych $\overline{5} 3 \mathrm{~m}$ wierzcholki: 12 krawędzie: 30

Wzor Eulera $(1750): \quad W-K+S=2$

Otrzymaliśmy zasadniczo charaktery wszystkich krystalicznych grup punktowych. Dane te zebrane są dla porównania, w zwartej formie, w tablicach 4.9-4.19.

Grupy (takie jak $\mathscr{C}_{5 v}$ i \mathscr{S}_{8}), które występują niekiedy przy rozpatrywaniu problemów cząsteczkowych, lecz nie są w zasadzie zaliczane do grup krystalograficznych, mogą być równie łatwo zanalizowane za pomocą opisanych tu metod.

Nie zamieszczamy tu tablic charakterów tych grup, które dają się przedstawić w postaci iloczynów prostych, tzn. grup

$$
\begin{array}{rlr}
\mathscr{C}_{3 h}=\mathscr{C}_{3} \times \mathscr{C}_{s}, & \mathscr{C}_{4 h}=\mathscr{C}_{4} \times \mathscr{C}_{i}, & \mathscr{C}_{6 h}=\mathscr{C}_{6} \times \mathscr{C}_{i} \\
D_{2 h} & =D_{2} \times \mathscr{C}_{i}, & D_{4 h}=D_{4} \times \mathscr{C}_{i}, \\
D_{3 d} & =\mathscr{S}_{3} \times \mathscr{C}_{6}, & D_{6 h} \times \mathscr{C}_{i} \\
O_{h} & =0 \times D_{6} \times \mathscr{C}_{i}, & T_{h}=T \times \mathscr{C}_{i}
\end{array}
$$

Powodem tego jest fakt, że, jak wykazano w poprzednim rozdziale, charaktery reprezentacji nieprzywiedlnych tych iloczynów prostych można otrzymać z reprezentacji poszczególnych czynników. Wszystkie grupy, które otrzymuje się przez tworzenie iloczynu prostego z grupą \mathscr{C}_{i}, posiadają podwójną ilość klas. Każda z reprezentacji grupy pierwotnej prowadzi do dwu reprezentacji iloczynu prostego, jednej symetrycznej i jednej antysymetrycznej względem inwersji I. Te same uwagi odnoszą się do iloczynów prostych zawierających \mathscr{C}_{s}. Jako przykład podajemy tablicę charakterów grupy $\mathscr{C}_{3 h}$ (tabl. 4.8).

Tablica 4.8
$\mathscr{C}_{3_{h}}:$
A^{\prime}
$A^{\prime \prime}$
E^{\prime}
$E^{\prime \prime}$$\left\{\begin{array}{lllrrr}E & C_{3} & C_{3}^{2} & \sigma_{h} & \sigma_{h} C_{3} & \sigma_{h} C_{3}^{2} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & \varepsilon & \varepsilon^{2} & 1 & \varepsilon & \varepsilon^{2} \\ 1 & \varepsilon^{2} & \varepsilon & 1 & \varepsilon^{2} & \varepsilon \\ 1 & \varepsilon & \varepsilon^{2} & -1 & -\varepsilon & -\varepsilon^{2} \\ 1 & \varepsilon^{2} & \varepsilon & -1 & -\varepsilon^{2} & -\varepsilon\end{array}\right.$

Zadanie. Zbudować tablicę charakterów dla grupy \mathscr{S}_{6}.
4.3. Tablice charakterów dla krystalicznych grup punktowych

Tablica 4.10
Tablica 4.9

Tablica 4.11

$\mathscr{C}_{2 n}$:	$\mathscr{C}_{2 v}:$	$V \equiv D_{2}$	E E E	$\begin{aligned} & C_{2} \\ & C_{2} \\ & C_{z} \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{h} \\ & \sigma_{v} \\ & C_{y} \\ & \hline \end{aligned}$	$\begin{aligned} & I \\ & \sigma_{v^{\prime}} \\ & C_{x} \end{aligned}$
A_{g}	$A_{1} ; z$	A_{1}	1	1	1	1
B_{g}	$B_{2} ; y$	$B_{3} ; x$	1	-1	-1	1
$A_{u} ; z$	A_{2}	$B_{1} ; z$	1	1	-1	-1
$B_{u} ; x, y$	$B_{1} ; x$	$B_{2} ; y$	1	-1	1	-1

Tablica 4.12

\mathscr{C}_{4} :	\mathscr{S}_{4} : ${ }^{\prime}$	$\begin{aligned} & E \\ & E \end{aligned}$	$\begin{aligned} & C_{4} \\ & S_{4} \end{aligned}$	$\begin{aligned} & C_{4}^{2} \\ & S_{4}^{2} \end{aligned}$	$\begin{aligned} & C_{4}^{3} \\ & S_{4}^{3} \end{aligned}$
$A ; z$	A	1	1	1	1
B	$B ; z$	1	-1	1	-1
$E ; x \pm i y$	$E ; x \pm i y$	1	${ }^{i}$	-1	-i

Tablica 4.13
Tablica 4.14

\mathscr{C}_{3} :	E	C_{3}	C_{3}^{2}	$\mathscr{C}_{3_{v}}: \quad D_{3}:$		E	$C_{3}(2)$	$\sigma_{v}(3)$
$A ; z$	1	1	1			E	$C_{3}(2)$	$\mathrm{C}_{2}(3)$
	1	ε	ε^{2}	$A_{1} ; z$	A_{1}	1	1	1
$E ; x \pm i y$	1	ε^{2}	ε	A_{2}	$A_{2} ;{ }^{2}$	1	1	-1
$\varepsilon=e^{-2 \pi i / 3}$				$E ; x, y$	$E ; x, y$	2	-1	0

Tablica 4.15

\mathscr{C}_{6}
$A ; z$
B
E_{1}
$E_{2} ; x \pm i y$

\hline 1 \& 1 \& 1 \& 1 \& 1 \& 1

1 \& -1 \& 1 \& -1 \& 1 \& -1

1 \& \omega^{2} \& -\omega \& 1 \& \omega^{2} \& -\omega

1 \& -\omega \& \omega^{2} \& 1 \& -\omega \& \omega^{2}

1 \& \omega \& \omega^{2} \& -1 \& -\omega \& -\omega^{2}

1 \& -\omega^{2} \& -\omega \& -1 \& \omega^{2} \& \omega\end{array}\right.\)

Tablica 4.16

$\mathscr{C}_{4 v}:$				E	C_{4}^{2}	$C_{4}(2)$	$\sigma_{v}(2)$
	$D_{4}:$	$\sigma_{v^{\prime}}(2)$					
		$D_{2 d}:$	C_{4}^{2}	$C_{4}(2)$	$C_{2}(2)$	$C_{2^{\prime}}(2)$	
E	C_{2}	$S_{4}(2)$	$C_{2}(2)$	$\sigma_{d}(2)$			
$A_{1} ; z$	A_{1}	A_{1}	1	1	1	1	1
A_{2}	$A_{2} ; z$	A_{2}	1	1	1	-1	-1
B_{1}	B_{1}	B_{1}	1	1	-1	1	-1
B_{2}	B_{2}	$B_{2} ; z$	1	1	-1	-1	1
$E ; x, y$	$E ; x, y$	$E ; x, y$	2	-2	0	0	0

Tablica 4.17

$D_{6}:$			E	C_{6}^{3}	$C_{6}^{2}(2)$	$C_{6}(2)$	$C_{2}(3)$	$C_{2^{\prime}}(3)$
	$C_{6 v}:$		$D_{3 h}:$	E	C_{6}^{3}	$C_{6}^{2}(2)$	$C_{6}(2)$	$\sigma_{v}(3)$
E	σ_{h}	$C_{3}^{\prime}(2)$	$S_{3}(2)$	$C_{2}(3)$	$\sigma_{v}(3)$			
A_{1}	$A_{1} ; z$	A_{1}^{\prime}	1	1	1	1	1	1
$A_{2} ; z$	A_{2}	A_{2}^{\prime}	1	1	1	1	-1	-1
B_{1}	B_{2}	$A_{1}^{\prime \prime}$	1	-1	1	-1	1	-1
B_{2}	B_{1}	$A_{2}^{\prime \prime} ; z$	1	-1	1	-1	-1	1
E_{2}	E_{1}	$E^{\prime} ; x, y$	2	2	-1	-1	0	0
$E_{1} ; x, y$	$E_{2} ; x, y$	$E^{\prime \prime}$	2	-2	-1	1	0	0

Tablica 4.18

$T:$	E	$C_{2}(3)$	$C_{3}(4)$	$C_{3}^{2}(4)$
A	-1	1	1	1
$E ; x, y, z$	1	1	ε	ε^{2}
1	1	ε^{2}	ε	
3	-1	0	0	

Tablica 4.19

$O:$		E	$C_{3}(8)$	$C_{4}^{2}(3)$	$C_{2}(6)$	$C_{4}(6)$
	$T_{d}:$	E	$C_{3}(8)$	$S_{4}^{2}(3)$	$\sigma_{d}(6)$	$S_{4}(6)$
A_{1}	A_{1}	1	1	1	1	1
A_{2}	A_{2}	1	1	1	-1	-1
E	E	2	-1	2	0	0
F_{2}	$F_{2} ; x, y, z$	3	0	-1	1	-1
$F_{1} ; x, y, z$	F_{1}	3	0	-1	-1	1

