Oddziaływania międzycząsteczkowe

Fakt występowania i charakter **słabych**, **niekowalencyjnych** oddziaływań międzycząsteczkowych wynika z obserwowalnych właściwości materii:

- w standardowych zakresach energii (temperatury i ciśnień) nie można materii ścisnąć do punktu → WYSTĘPUJE KRÓTKOZASIĘGOWE ODPYCHANIE
- istnieje materia skondensowana (ciecze i ciała stałe) → WYSTĘPUJE DALEKOZASIĘGOWE PRZYCIĄGANIE bez oddziaływań świat byłby jednorodnym gazem
- przez dostarczenie energii (np. ogrzanie) można przenieść materię w gazowy stan skupienia → ENERGIA DYSOCJACJI ODDZIAŁYWAŃ MIĘDZYCZĄSTECZKOWYCH JEST MNIEJSZA NIŻ WIĄZAŃ KOWALENCYJNYCH

Używając koncepcji oddziaływań międzycząsteczkowych:

- można przewidzieć termodynamiczne i kinetyczne własności gazów i cieczy
 - odchylenia od równania gazu doskonałego

np. równanie van der Waalsa $\left(p + \frac{a}{V_m^2}\right)(V_m - b) = RT$

- współczynniki procesów transportu np. przewodności cieplnej, dyfuzji
- można przewidzieć własności kryształów
 - geometria równowagowa
 - energia wiązania
 - widmo wzbudzeń fononowych
- możemy wyjaśnić tworzenie struktur wyższego rzędu przez związki chemiczne
 - występowanie wiązań wodorowych i procesy Charge Transfer
 - stabilność DNA i RNA
 - struktury i procesy biologiczne, np. budowa błon komórkowych, praca mięśni
- znajomość powierzchni en. oddz., która opisuje wzajemne trajektorie reagentów, jest potrzebna do wyjaśnienia mechanizmów reakcji elementarnych i uzyskania stałych równowagi reakcji

Energie oddziaływania:

- nie są mierzone bezpośrednio w żadnym eksperymencie
- bezpośrednio mierzone są pewne wielkości wynikające z istnienia oddziaływań międzycząsteczkowych
- z eksperymentów możemy uzyskać semiempiryczne potencjały modelowe z parametrami uzyskanymi przez fitowanie do zmierzonych danych

Oddziaływania możemy też opisywać w czysto teoretyczny sposób:

- musimy sformułować teorię fizyczną łączącą oddziaływanie z daną mierzoną wielkością
- podejście teoretyczne bazuje na uniwersalności praw mechaniki kwantowej, która obowiązuje na poziomie atomowym i molekularnym
- pozwala na wyznaczenie pewnych własności w warunkach niedostępnych eksperymentalnie (np. wysokie temperatury, duże ciśnienia)
- dla prostych układów obliczenia teoretyczne są dokładniejsze niż istniejące eksperymenty

Energia oddziaływania

Dla uproszczenia rozważań rozpatrzmy dwa zamkniętopowłokowe układy: atomy, cząsteczki lub jony molekularne. Oba układy oznaczamy odpowiednio A i B

Energia oddziaływania E_{int} między A i B jest zdefiniowana jako:

$$E_{\text{int}} = E(AB) - E(A) - E(B)$$

gdzie E(AB), E(A) i E(B) to obliczone dla ustalonych położeń jąder (przybliżenie Borna-Oppenheimera) energie elektronowe odpowiednio:

- układu A + B (zwanego dimerem AB)
- monomeru A
- monomeru B

Geometrie monomerów A i B są takie same jak w dimerze A + B

Energia oddziaływania zależy od:

- odległości R pomiędzy molekułami A i B
- wzajemnej orientacji molekuł A i B
- geometrii wewnętrznej A i B
- stanów kwantowych A i B

• Oddz. międzycząsteczkowe a oddz. walencyjne

- Oba rodzaje oddziaływań mają to same źródło oddziaływania elektrostatyczne pomiędzy naładowanymi cząstkami składającymi się na atomy i molekuły
- Rozróżnienie to konwencja bazująca na sile oddziaływań:
 - -0.1 kJ/mol (oddziaływania Van der Waalsa w dimerze helu)
 - -20 kJ/mol (wiązania wodorowe między cząsteczkami wody)
 - -440 kJ/mol (energia oddziaływania rodnika CH₃ i atomu H)
- Wyodrębnienie oddziałujących podukładów w danym układzie jest w zasadzie arbitralne brak w mechanice kwantowej sposobu na wydzielenie z dowolnego zbioru jąder i elektronów poszczególnych cząsteczek, które składają się na ten układ
- Pojęcie oddziaływań międzycząsteczkowych nabiera swojego intuicyjnego sensu tylko wtedy, gdy badane podukłady znajdują się odpowiednio daleko od siebie

Istnieją dwie ogólne metody obliczania energii oddziaływania:

- metoda supermolekularna
- metoda perturbacyjna
 - rachunek zaburzeń Rayleigha-Schrödingera (przybliżenie polaryzacyjne)
 - rachunek zaburzeń o adaptowanej symetrii SAPT (Symmetry-Adapted Perturbation Theory)

Metoda supermolekularna

W metodzie supermolekularnej obliczamy przybliżone energie elektronowe $\tilde{E}(AB)$, $\tilde{E}(A)$ i $\tilde{E}(B)$ dla dimeru AB oraz dla monomerów A i B korzystając z metody przybliżonej \mathcal{M} (np. HF, CCSD, DFT) i wykonujemy odejmowanie:

$$\widetilde{E}_{int} = \widetilde{E}(AB) - \widetilde{E}(A) - \widetilde{E}(B)$$

Metoda supermolekularna polega na kasowaniu się błędów, związanych z przybliżonym charakterem metody \mathcal{M} , w tym odejmowaniu

Warunkami koniecznymi kasowania się błędów są:

- użycie tej samej **bazy** dla dimeru AB, oraz dla każdego z monomerów A i B
- użycie tej samej **metody** \mathcal{M} dla dimeru AB, oraz dla każdego z monomerów A i B

• konsystencja rozmiarowa metody $\mathcal{M}: \widetilde{E}(AB) \xrightarrow{R \to \infty} \widetilde{E}(A) + \widetilde{E}(B)$ NIE JEST: ograniczone CI; JEST: HF, pełne CI, ograniczone i pełne CC, MPn; TO ZALEŻY: DFT

Metoda supermolekularna

Energia oddziaływania (w hartree) dimeru helu dla R = 5.6 bohr

	FCI/d-aug-cc-pV7Z	wynik "dokładny"
2E(He)	-5.807120485	-5.807448754
$E(\text{He}_2)$	-5.807155087	-5.807483590
E _{int}	-0.000034602	-0.000034836

- błędy energii obliczonych względem "dokładnych" są rzędu $3 \cdot 10^{-4}$
- sama energia oddziaływania jest rzędu $3 \cdot 10^{-5}$
- mimo to błąd E_{int} to tylko 0.7%
- zaszło kasowanie błędów!

Metoda supermolekularna

Zalety:

- uniwersalność
- koncepcyjna prostota

Wady:

- wynik nie daje zrozumienia natury oddziaływania (jego zależności od własności monomerów)
- kasowanie błędów może nie wystąpić
- *Ẽ*(AB), *Ẽ*(A) i *Ẽ*(B) to duże liczby, a *Ẽ*_{int} ma zwykle małą wartość (wiele rzędów wielkości mniejszą niż energie z których jest liczona) → utrata cyfr przy odejmowaniu i mała precyzja wyniku
- tzw. błąd superpozycji bazy (BSSE) gdy baza dla A lub baza dla B jest podzbiorem bazy dla AB

 \rightarrow bład ten, zawsze ujemny, może być znaczny dla małych baz i powinien być zawsze eliminowany

Rachunek zaburzeń Rayleigha-Schrödingera (RS)

Metoda przybliżonego rozwiązania r. Schrödingera dla hamiltonianu

$$\hat{H} = \hat{H}_0 + \hat{H}'$$

• znamy zestaw rozwiązań dla hamiltonianu niezaburzonego \hat{H}_0

$$\hat{H}_0 \Psi_n^{(0)} = E_n^{(0)} \Psi_n^{(0)}$$

• $\hat{H}' = \hat{H} - \hat{H}_0$ stanowi małe zaburzenie

Uzmienniamy $\hat{H}(\lambda), \lambda \in \mathbb{C}$, (tylko $\lambda = 1$ daje fizyczne rozwiązanie) i rozwijamy rozwiązanie w szereg względem potęg λ

$$\begin{aligned} \hat{H}(\lambda) &= \hat{H}_0 + \lambda \hat{H}' \\ \Psi_n(\lambda) &= \Psi_n^{(0)} + \lambda \Psi_n^{(1)} + \lambda^2 \Psi_n^{(2)} + \dots, \qquad \langle \Psi_n^{(0)} | \Psi_n^{(k)} \rangle = 0, k > 0 \\ E_n(\lambda) &= E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots \end{aligned}$$

i rozwiązujemy $\hat{H}(\lambda)\Psi_n(\lambda) = E_n(\lambda)\Psi_n(\lambda)$ dla kolejnych potęg λ

$$E_n^{(1)} = \langle \Psi_n^{(0)} | \hat{H}' | \Psi_n^{(0)}
angle, \qquad E_n^{(2)} = -\sum_{m
eq n} rac{|\langle \Psi_m^{(0)} | \hat{H}' | \Psi_n^{(0)}
angle|^2}{E_m^{(0)} - E_n^{(0)}}$$

dla stanu podstawowego (n = 0) $E_0^{(2)}$ jest zawsze ujemna!

Zastosowanie rachunku zaburzeń

Punkt wyjścia:

Hamiltonian \hat{H} dla dimeru AB można zapisać w postaci:

$$\hat{H} = \hat{H}_{\rm A} + \hat{H}_{\rm B} + \hat{V}_{\rm AB}$$

gdzie \hat{H}_A i \hat{H}_B to hamiltoniany dla monomerów A i B, a \hat{V}_{AB} uwzględnia ektrostatyczne oddziaływanie elektronów i jąder monomeru A z elektronami i jądrami monomeru B

$$\hat{V}_{AB} = \sum_{a=1}^{K_A} \sum_{b=1}^{K_B} \frac{Z_a Z_b}{r_{ab}} - \sum_{a=1}^{K_A} \sum_{j=1}^{N_B} \frac{Z_a}{r_{aj}} - \sum_{i=1}^{N_A} \sum_{b=1}^{K_B} \frac{Z_b}{r_{bi}} + \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} \frac{1}{r_{ij}}$$

gdzie

- N_A i N_B oznaczają liczby elektronów w cząsteczkach A i B
- $K_{\rm A}$ i $K_{\rm B}$ oznaczają liczby jąder
- Z_a i Z_b to ładunki jąder
- $r_{ab}, r_{aj}, r_{bi}, r_{ij}$ to odległości między cząstkami, np. $r_{ij} = |\vec{r}_j \vec{r}_i|$

Hamiltonian \hat{H} można podzielić na: operator niezaburzony $\hat{H}_0 = \hat{H}_A + \hat{H}_B$ operator zaburzenia $\hat{H}' = \hat{V}_{AB}$

Jeśli znamy rozwiązania równania Schrödingera dla monomerów:

$$\hat{H}_{\mathrm{A}}\Psi^{\mathrm{A}}_{n_{\mathrm{A}}} = E^{\mathrm{A}}_{n_{\mathrm{A}}}\Psi^{\mathrm{A}}_{n_{\mathrm{A}}} \qquad \hat{H}_{\mathrm{B}}\Psi^{\mathrm{B}}_{n_{\mathrm{B}}} = E^{\mathrm{B}}_{n_{\mathrm{B}}}\Psi^{\mathrm{B}}_{n_{\mathrm{B}}}$$

to funkcja własna $\Psi^{(0)}$ operatora \hat{H}_0 ma postać:

$$\Psi^{(0)} = \Psi_0^A \Psi_0^B$$

a odpowiadająca jej energia to:

$$E^{(0)} = E_0^{\rm A} + E_0^{\rm B}$$

Założyliśmy, że interesuje nas oddz. monomerów w stanach podstawowych $n_{\rm A} = 0, n_{\rm B} = 0$

Wtedy

$$E_{\text{int}} = E(AB) - E(A) - E(B) = E - E^{(0)} = E^{(1)} + E^{(2)} + \dots$$

Energia oddziaływania jest sumą perturbacyjnych poprawek do energii!

$$\Psi^{(0)} = \Psi_0^A \Psi_0^B$$

Funkcja $\Psi^{(0)}$ w powyższej postaci (przybliżenie polaryzacyjne)

- jest antysymetryczna względem zamiany współrzędnych dwóch dowolnych elektronów oddzielnie w molekule A i oddzielnie w molekule B
- nie jest antysymetryczna względem zamiany współrzędnych pary elektronów: jednego z molekuły A i jednego z molekuły B

ale dokładna funkcja falowa dla dimeru AB musi być antysymetryczna względem zamiany współrzędnych dwóch dowolnych elektronów, niezależnie od tego, do której molekuły arbitralnie je przypisaliśmy

$$\Psi^{(0)} = \Psi_0^{\mathrm{A}} \Psi_0^{\mathrm{B}}$$

• $\Psi_0^A \in \mathcal{H}(A, N_A, \gamma^{antysym})$ — przestrzeń Hilberta N_A -elektronowych antysymetrycznych funkcji monomeru A

•
$$\Psi_0^B \in \mathcal{H}(B, N_B, \gamma^{antysym})$$
 — przestrzeń Hilberta N_B -elektronowych antysymetrycznych funkcji monomeru B

- chcemy znaleźć dokładne rozwiązanie dla dimeru: $\Psi \in \mathcal{H}(AB, N_A + N_B, \gamma^{antysym})$ — przestrzeń ($N_A + N_B$)-elektronowych antysymetrycznych funkcji dimeru AB
- ale funkcja zerowego rzędu należy do przestrzeni iloczynowej

 $\Psi^{(0)} \in \mathcal{H}(\mathsf{A}, N_{\mathsf{A}}, \gamma^{\mathsf{antysym}}) \otimes \mathcal{H}(\mathsf{B}, N_{\mathsf{B}}, \gamma^{\mathsf{antysym}})$

• np. dla oddziaływania dwóch atomów wodoru: $\Psi_0^{A} = \chi_A(\mathbf{x}_1), \Psi_0^{B} = \chi_B(\mathbf{x}_2)$ $\Psi^{(0)} = \chi_A(\mathbf{x}_1)\chi_B(\mathbf{x}_2)$ $= \underbrace{\frac{1}{2} [\chi_A(\mathbf{x}_1)\chi_B(\mathbf{x}_2) - \chi_A(\mathbf{x}_2)\chi_B(\mathbf{x}_1)]}_{\text{antysymetryczna} \rightarrow \text{fizyczna}} + \underbrace{\frac{1}{2} [\chi_A(\mathbf{x}_1)\chi_B(\mathbf{x}_2) + \chi_A(\mathbf{x}_2)\chi_B(\mathbf{x}_1)]}_{\text{symetryczna} \rightarrow \text{NIEfizyczna}}$ Przestrzeń iloczynową zawsze można rozkłożyć na sumę przestrzeni o zdefiniowanej symetrii permutacyjnej

$$\begin{split} \Psi^{(0)} &\in \mathcal{H}(\mathbf{A}, N_{\mathbf{A}}, \gamma^{\mathrm{antysym}}) \otimes \mathcal{H}(\mathbf{B}, N_{\mathbf{B}}, \gamma^{\mathrm{antysym}}) \\ &= \mathcal{H}(\mathbf{AB}, N_{\mathbf{A}} + N_{\mathbf{B}}, \gamma^{1}) \oplus \mathcal{H}(\mathbf{AB}, N_{\mathbf{A}} + N_{\mathbf{B}}, \gamma^{2}) \oplus \cdots \end{split}$$

- γ^i numerują różne możliwe symetrie permutacyjne
- tylko jedna z γ^i odpowiada fizycznej antysymetrycznej funkcji
- pozostałe γ^i odpowiadają przypadkom niefizycznym, np. stan bozonowy dla dimeru helu o konfiguracji $1\sigma_g^4$ (sic!)
- jeśli jakiś stan niefizyczny ma niższą energię niż szukany stan fizyczny, to polaryzacyjny rachunek zaburzeń:
 - będzie zbiegał do tej niższej, niefizycznej, energii (do matematycznego stanu podstawowego)
 - będzie rozbiegał
- polaryzacyjny rachunek zaburzeń jest zwykle rozbieżny gdy monomery mają więcej niż 1 elektron

Przybliżenie polaryzacyjne przy perturbacyjnym obliczaniu energii oddziaływania jest akceptowalne dla dużych odległości między A i B

Dla małych odległości, aby uzyskać poprawne wyniki, trzeba wymuszać poprawną antysymetrię funkcji falowej → rachunek zaburzeń o adaptowanej symetrii (SAPT) Stosując polaryzacyjny rachunek zaburzeń (do drugiego rzędu) można pokazać, że o ile odległości międzymolekularne nie są zbyt małe, to energia oddziaływania jest w dobrym przybliżeniu sumą:

- energii oddziaływania elektrostatycznego 1. rząd
- energii oddziaływania indukcyjnego 2. rząd
- energii oddziaływania dyspersyjnego 2. rząd

Jeśli dodatkowo wymusi się poprawną symetrię permutacyjną funkcji falowej (metoda SAPT) to pojawia się dodatkowy wkład:

• energia oddziaływania wymiennego

$$E_{\text{int}} = E_{\text{elst}} + E_{\text{ind}} + E_{\text{disp}} + \frac{E_{\text{exch}}}{E_{\text{exch}}}$$

Pierwszy rząd rachunku zaburzeń

Wychodzimy z ogólnego wzoru na poprawkę pierwszego rzędu do energii w rachunku zaburzeń

$$E^{(1)} = \langle \Psi^{(0)} | \hat{H}' | \Psi^{(0)} \rangle$$

i wprowdzamy zdefiniowane wcześniej \hat{H}' i $\Psi^{(0)}$

$$\begin{split} E^{(1)} &= \int \left(\Psi_0^{\rm A} \Psi_0^{\rm B}\right)^* \hat{V}_{\rm AB} \left(\Psi_0^{\rm A} \Psi_0^{\rm B}\right) \mathrm{d}\tau \\ &= \sum_{a=1}^{K_{\rm A}} \sum_{b=1}^{K_{\rm B}} \frac{Z_a Z_b}{r_{ab}} - \sum_{a=1}^{K_{\rm A}} \int \frac{Z_a \rho_{00}^{\rm B}(\vec{r}_j)}{r_{aj}} \, \mathrm{d}\vec{r}_j - \sum_{b=1}^{K_{\rm B}} \int \frac{\rho_{00}^{\rm A}(\vec{r}_i) Z_b}{r_{bi}} \, \mathrm{d}\vec{r}_i + \int \frac{\rho_{00}^{\rm A}(\vec{r}_i) \rho_{00}^{\rm B}(\vec{r}_j)}{r_{ij}} \, \mathrm{d}\vec{r}_i \mathrm{d}\vec{r}_j \end{split}$$

gdzie $\rho_{00}^{A}(\vec{r}_{i})$ i $\rho_{00}^{B}(\vec{r}_{j})$ to jednoelektronowe rozkłady gęstości związane z funkcjami falowymi Ψ_{0}^{A} i Ψ_{0}^{B} , na przykład

$$\rho_{00}^{\mathrm{A}}(\vec{r}_{i}) = N_{A} \int |\Psi_{0}^{\mathrm{A}}(1 \dots i \dots N_{A})|^{2} \,\mathrm{d}\tau^{(i)}$$

przy czym d $\tau^{(i)}$ oznacza całkowanie po współrzędnych (przestrzennych i spinowych) wszystkich elektronów poza elektronem *i* oraz sumowanie po współrzędnej spinowej elektronu *i*

Energia elekrostatyczna E_{elst} to zwykła energia elektrostatycznego oddziaływania niezaburzonych rozkładów ładunku elektrycznego dla monomerów A i B

$$E_{\text{elst}} = \int \frac{\rho^{\text{A}}(\vec{r}_1)\rho^{\text{B}}(\vec{r}_2)}{|\vec{r}_1 - \vec{r}_2|} \, \mathrm{d}\vec{r}_1 \mathrm{d}\vec{r}_2$$

$$\rho^{X}(\vec{r}) = \sum_{x=1}^{K_{X}} Z_{x} \delta(\vec{r} - \vec{r}_{x}) - \rho^{X}_{00}(\vec{r})$$

gdzie para (\mathbf{X}, x) to (\mathbf{A}, a) lub (\mathbf{B}, b) , oraz

- $Z_x \delta(\vec{r} \vec{r}_x)$ to rozkład dodatniego ładunku w jądrze *x* (opisany deltą Diraca zlokalizowaną na jądrze *x*)
- $-\rho_{00}^{X}(\vec{r})$ to rozkład ujemnego ładunku elektronowego związany z niezaburzoną funkcją falową Ψ_{0}^{X}

Rozwinięcie multipolowe E_{elst}

$$E_{\text{elst}} = \int \frac{\rho^{\text{A}}(\vec{r}_1)\rho^{\text{B}}(\vec{r}_2)}{|\vec{r}_1 - \vec{r}_2|} \, \mathrm{d}\vec{r}_1 \mathrm{d}\vec{r}_2 = \int \varphi^{\text{A}}(\vec{r}_2 - \vec{r}_1)\rho^{\text{B}}(\vec{r}_2) \, \mathrm{d}\vec{r}_1 \mathrm{d}\vec{r}_2$$

- dla dużych odległości międzymonomerowych nakrywanie funkcji falowych obu monomerów jest zaniedbywalne
 - \rightarrow obie cząsteczki uważamy za dwa niezależne rozkłady ładunków
 - potencjał elektrostatyczny, $\varphi^{A}(\vec{r}_{2} \vec{r}_{1})$, generowany przez jedną cząsteczkę poza obszarem przez nią efektywnie zajmowanym można przedstawić w postaci rozwinięcia multipolowego
 - gęstość ładunku drugiej cząsteczki, $\rho^{\rm B}(\vec{r}_2)$, także możemy przedstawić w postaci rozwinięcia multipolowego
- energia elektrostatyczna to wtedy energia oddziaływania trwałych momentów multipolowych drugiej cząsteczki (B) w stałym polu generowanym przez trwałe momenty multipolowe pierwszej (A)

Potencjał elektrostatyczny generowany przez rozkład ładunków:

- mamy rozkład przestrzenny ładunków punktowych q_i w pozycjach r
 _i skoncentrowany wokół początku układu współrzędnych
- wyznaczamy potencjał w punkcie \vec{R} , takim że $|\vec{R}| \gg |\vec{r}_i|$ Na początek przyjmijmy, że wektor \vec{R} jest skierowany wzdłuż osi Z, czyli $\vec{R} = [0, 0, Z]$

$$\begin{split} \varphi(\vec{R}) &= \sum_{i} \frac{q_{i}}{|\vec{R} - \vec{r}_{i}|} = \sum_{i} \frac{q_{i}}{\sqrt{x_{i}^{2} + y_{i}^{2} + (Z - z_{i})^{2}}} \\ &= \sum_{i} q_{i} \left(\frac{1}{Z} + \frac{z_{i}}{Z^{2}} + \frac{\frac{1}{2}(2z_{i}^{2} - x_{i}^{2} - y_{i}^{2})}{Z^{3}} + \dots \right) \\ &= \frac{\sum_{i} q_{i}}{Z} + \frac{\sum_{i} q_{i} z_{i}}{Z^{2}} + \frac{\sum_{i} q_{i} \frac{1}{2}(3z_{i}^{2} - r_{i}^{2})}{Z^{3}} + \dots \end{split}$$

$$\varphi(\vec{R}) = \frac{\sum_{i} q_{i}}{Z} + \frac{\sum_{i} q_{i} z_{i}}{Z^{2}} + \frac{\sum_{i} q_{i} \frac{1}{2} (3z_{i}^{2} - r_{i}^{2})}{Z^{3}} + \dots$$

Możemy to przepisać jako:

$$\varphi(\vec{R}) = \frac{M^{(0)}}{Z} + \frac{M^{(1)}_{z}}{Z^2} + \frac{M^{(2)}_{zz}}{Z^3} + \dots$$

gdzie

- $M^{(0)} = \sum_{i} q_{i}$ \rightarrow całkowity ładunek, $M^{(0)} \equiv q$
- $M_{\alpha}^{(1)} = \sum_{i} q_{i} r_{i,\alpha}$ $\rightarrow 3$ składowe wektora momentu dipolowego, $M_{\alpha}^{(1)} \equiv \mu_{\alpha}$
- $M_{\alpha\beta}^{(2)} = \sum_{i} q_{i} \frac{1}{2} (3r_{i,\alpha}r_{i,\beta} \delta_{\alpha\beta}r_{i}^{2})$ $\rightarrow 9$ składowych tensora momentu kwadrupolowego, $M_{\alpha\beta}^{(2)} \equiv Q_{\alpha\beta}$ 5 niezależnych!

• $M^{(3)}_{\alpha\beta\gamma} \rightarrow 27$ składowych tensora mom. oktupolowego (7 niezależnych!) $\alpha(\beta,\gamma) = x, y, z$ numeruje trzy kartezjańskie składowe danego wektora lub tensora Ogólna (kartezjańska) postać rozwinięcia multipolowego potencjału:

$$\varphi^{\rm A}(\vec{R}) = \sum_{l_{\rm A}=0}^{\infty} \frac{(-1)^{l_{\rm A}}}{(2l_{\rm A}-1)!!} M^{(l_{\rm A}),{\rm A}}_{\alpha_1\cdots\alpha_{l_{\rm A}}} T_{\alpha_1\cdots\alpha_{l_{\rm A}}}$$

dla przejrzystości zapisu pominięto l sumowań po $\alpha_1, \ldots, \alpha_l$

gdzie 3^{*l*} składowych momentów 2^{*l*}-polowych $M_{\alpha_1 \cdots \alpha_l}^{(l)}$ można obliczyć jako

$$M_{\alpha_1\cdots\alpha_l}^{(l)} = \frac{(-1)^l}{l!} \sum_i q_i r_i^{2l+1} \nabla_{\alpha_1}\cdots\nabla_{\alpha_l} \left(\frac{1}{r_i}\right)$$

a zależność od składowych wektora \vec{R} jest zawarta w

$$T_{\alpha_1\cdots\alpha_l} = \nabla_{\alpha_1}\cdots\nabla_{\alpha_l}\left(\frac{1}{R}\right)$$

wiedząc, że $\nabla_{\alpha} r = \frac{r_{\alpha}}{r}$ łatwo obliczyć pochodne $\frac{1}{r}$: $\nabla_{\alpha} \frac{1}{r} = -\frac{r_{\alpha}}{r^3}$ $\nabla_{\alpha} \nabla_{\beta} \frac{1}{r} = \frac{3r_{\alpha}r_{\beta}}{r^5} - \frac{\delta_{\alpha\beta}}{r^3}$

Energia rozkładu ładunków w niejednorodnym polu potencjału

- mamy rozkład przestrzenny ładunków punktowych q_j w pozycjach r_j skoncentrowany wokół pewnego położenia R
- ładunki znajdują się w polu elektrostatycznym, którego zmienność przestrzenna jest niewielka

$$E = \sum_{j} q_{j}\varphi(\vec{R} + \vec{r}_{j}) = \sum_{j} q_{j} \sum_{l} \frac{1}{l!} r_{j,\beta_{1}} \cdots r_{j,\beta_{l}} \underbrace{\nabla_{\beta_{1}} \cdots \nabla_{\beta_{l}} \left(\varphi(\vec{R} + \vec{r}_{j})\right)\Big|_{\vec{r}_{j}=0}}_{\text{pochodne po } \vec{r}_{j}}$$
$$= \sum_{l} \frac{1}{l!} \left(\sum_{j} q_{j}r_{j,\beta_{1}} \cdots r_{j,\beta_{l}}\right) \underbrace{\nabla_{\beta_{1}} \cdots \nabla_{\beta_{l}} \left(\varphi(\vec{R})\right)}_{\text{pochodne po } \vec{R}}$$

czyli część zależna od rozkładu ładunków została odseparowana od potencjału i jego pochodnych obliczonych w punkcie odniesienia. Możemy wprowadzić momenty multipolowe

$$E^{\mathrm{B}} = \sum_{l_{\mathrm{B}}=0}^{\infty} \frac{1}{(2l_{\mathrm{B}}-1)!!} M^{(l_{\mathrm{B}}),\mathrm{B}}_{\beta_{1}\cdots\beta_{l_{\mathrm{B}}}} \nabla_{\beta_{1}}\cdots\nabla_{\beta_{l_{\mathrm{B}}}} \left(\varphi(\vec{R})\right)$$

Energia oddziaływania rozkładów ładunków w rozw. multipolowym Łączymy:

- rozwinięcie multipolowe potencjału generowanego przez rozkład A
- z wyrażniem na energię rozwinięcia multipolowego rozkładu B w zewnętrznym polu

$$\begin{split} E = &\sum_{l_{A}} \sum_{l_{B}} \frac{(-1)^{l_{A}}}{(2l_{A}-1)!!(2l_{B}-1)!!} M^{(l_{A}),A}_{\alpha_{1}\cdots\alpha_{l_{A}}} T_{\alpha_{1}\cdots\alpha_{l_{A}}}\beta_{1}\cdots\beta_{l_{B}} M^{(l_{B}),B}_{\beta_{1}\cdots\beta_{l_{B}}} \\ = & q^{A}q^{B}\frac{1}{R} \\ &+ \left(\mu^{A}_{\alpha}q^{B} - q^{A}\mu^{B}_{\alpha}\right)\frac{R_{\alpha}}{R^{3}} \\ &+ \left(\frac{1}{3}Q^{A}_{\alpha\beta}q^{B} - \mu^{A}_{\alpha}\mu^{B}_{\beta} + \frac{1}{3}q^{A}Q^{B}_{\alpha\beta}\right)\frac{3R_{\alpha}R_{\beta} - \delta_{\alpha\beta}R^{2}}{R^{5}} \\ &+ \cdots \end{split}$$

Alternatywna postać wyrażenia na energię wykorzystująca sferyczną definicję momentów multipolowych

$$E = \sum_{l_A l_B} \sum_{m_A m_B} (-1)^{l_A} \left(\frac{(2l_A + 2l_B + 1)!}{(2l_A)!(2l_B)!} \right)^{\frac{1}{2}} \begin{pmatrix} l_A & l_B & l_A + l_B \\ m_A & m_B & -m_A - m_B \end{pmatrix}$$
$$\times M_{m_A}^{(l_A),A} M_{m_B}^{(l_B),B} \frac{C_{l_A + l_B}^{-m_A - m_B}(\hat{R})}{R^{l_A + l_B + 1}}$$

gdzie 2l + 1 składowych momentów 2^l -polowych $M_m^{(l)}$ można obliczyć jako

$$M_m^{(l)} = \sum_i q_i r_i^l \mathcal{C}_l^m(\hat{r}_i)$$

- wszystkie składowe sferycznych mom. multipolowych są niezależne
- sformułowanie sferyczne jest wygodniejsze gdy $l \ge 2$

$$M_{2}^{(2)} = +\frac{1}{\sqrt{6}}(Q_{xx} - Q_{yy} + 2iQ_{zz})$$

$$M_{0}^{(1)} = q$$

$$M_{0}^{(1)} = \mu_{z}$$

$$M_{0}^{(1)} = +\frac{1}{\sqrt{2}}(\mu_{x} + i\mu_{y})$$

$$M_{0}^{(2)} = Q_{zz}$$

$$M_{-1}^{(2)} = +\frac{1}{\sqrt{2}}(\mu_{x} - i\mu_{y})$$

$$M_{-2}^{(2)} = +\frac{1}{\sqrt{6}}(Q_{xx} - Q_{yy} - 2iQ_{zz})$$

Dla dużych odległości międzymonomerowych R, Eelst zanika jak

$$E_{\rm elst} \propto rac{1}{R^{l_{\rm A}+l_{\rm B}+1}}$$

gdzie l_X oznacza, że **najniższy nieznikający moment multipolowy** molekuły X to moment 2^{l_X} -polowy

(Sferyczne) momenty 2^l -polowe dowolnej molekuły zdefiniowane są w ogólności:

$$M^{(l)}_m = \int \Psi^* \, \hat{M}^{(l)}_m \, \Psi \, \mathrm{d} au$$

gdzie $\hat{M}_m^{(l)}$ to operator (sferycznego) momentu 2^l-polowego

$$\hat{M}_m^{(l)} = \sum_i q_i \, r_i^l \, \mathcal{C}_l^m(\hat{r}_i)$$

(sumowanie przebiega po wszystkich ładunkach q_i w molekule)

Alternatywnie, jeśli znamy rozkład gęstości ładunku w molekule, $\rho(\vec{r})$, możemy obliczyć momenty multipolowe jako:

$$M_m^{(l)} = \int r^l \mathcal{C}_l^m(\hat{r}) \rho(\vec{r}) \mathrm{d}\vec{r}$$

Modelowe rozkłady ładunków dające 2^l -pol jako najniższy nieznikający moment multipolowy

l = 2kwadrupol — dowolna cząsteczka dwuatomowa homojądrowa \mathbf{A} — \mathbf{A} $+\delta \frac{-\delta}{-\delta} \delta +$

l = 2

najwyższe zajęte MO benzenu

kwadrupol

l = 4

heksadekapol 2⁴

l = 0 jony

- l > 0 cząsteczki neutralne
 - l = 1 większość cząsteczek BEZ środka symetrii
 - l = 2 większość cząsteczek Z środkiem symetrii
 - l = 3 cząsteczki o symetrii T_d (metan)
 - l = 4 cząsteczki o symetrii O_h (SF₆, OsF₈)
 - l = 6 cząsteczki o symetrii I_h (fulleren C₆₀)

Szczególny przypadek — neutralne atomy w zależności od wartości całkowitego orbitalnego momentu pędu *L*

L = 0, stany *S* całkowity **BRAK** momentów multipolowych L > 0, stany *P*, *D*, *F*, ... l = 2

*E*_{elst} może być **ujemna** (**przyciąganie**) lub **dodatnia** (**odpychanie**)

• Oddziaływanie ładunek–ładunek ($l_{\rm A} = 0, l_{\rm B} = 0$)

$$E_{
m elst} \propto rac{q^{
m A}q^{
m B}}{R}$$

• Oddziaływanie dipol–ładunek ($l_{\rm A} = 1, l_{\rm B} = 0$)

$$E_{
m elst} \propto rac{(ec{\mu}^{
m A} \cdot \hat{R})q^{
m B}}{R^2}$$

• Oddziaływanie ładunek–dipol ($l_A = 0, l_B = 1$)

$$E_{
m elst} \propto -rac{q^{
m A}(ec{\mu}^{
m B}\cdot\hat{R})}{R^2}$$

• Oddziaływanie dipol–dipol ($l_A = 1, l_B = 1$)

$$E_{\rm elst} \propto \frac{\vec{\mu}^{\rm A} \cdot \vec{\mu}^{\rm B} - 3(\vec{\mu}^{\rm A} \cdot \hat{R})(\vec{\mu}^{\rm B} \cdot \hat{R})}{R^3}$$

Wektor \vec{R} jest skierowany od A do B, $\hat{R} = \vec{R}/R$

Oddziaływanie dipoli

$$E_{\text{elst}} \propto R^{-3} \left[\vec{\mu}^{\text{A}} \cdot \vec{\mu}^{\text{B}} - 3(\vec{\mu}^{\text{A}} \cdot \hat{R})(\vec{\mu}^{\text{B}} \cdot \hat{R}) \right] \\ \propto R^{-3} \left| \vec{\mu}^{\text{A}} \right| \left| \vec{\mu}^{\text{B}} \right| \left[\sin \theta_{\text{A}} \sin \theta_{\text{B}} \cos(\varphi_{\text{A}} - \varphi_{\text{B}}) - 2 \cos \theta_{\text{A}} \cos \theta_{\text{B}} \right]$$

 θ_A , θ_B — kąty między wektorami $\vec{\mu}^A$ i $\vec{\mu}^B$ a kierunkiem wyznaczonym przez \vec{R} φ_A , φ_B — kąty między wektorami $\vec{\mu}^A$ i $\vec{\mu}^B$ a dowolną płaszczyzną zawierającą \vec{R}

Oddziaływanie kwadrupoli

Dla dwóch cząsteczek o wyróżnionej osi tensor momentu kwadrupolowego ma postać $\begin{bmatrix} -Q/2 & 0 & 0 \\ 0 & -Q/2 & 0 \\ 0 & 0 & Q \end{bmatrix}$

$$\begin{split} E_{\text{elst}} \propto R^{-5} \ Q^{\text{A}} Q^{\text{B}} \ \frac{3}{4} \left[1 - 5\cos^2\theta_{\text{A}} - 5\cos^2\theta_{\text{B}} - 15\cos^2\theta_{\text{A}}\cos^2\theta_{\text{B}} \right. \\ \left. + 2\left(\sin\theta_{\text{A}}\sin\theta_{\text{B}}\cos(\varphi_{\text{A}} - \varphi_{\text{B}}) - 4\cos\theta_{\text{A}}\cos\theta_{\text{B}}\right)^2 \right] \end{split}$$

Drugi rząd rachunku zaburzeń

- w układzie dwóch oddziałujących cząsteczek, każda z molekuł znajduje się w polu elektrycznym generowanym przez drugą molekułę → gęstość elektronowa każdej z molekuł będzie uległa zaburzeniu (polaryzacji) względem sytuacji gdy druga molekuła jest nieobecna
- w energii oddziaływania pojawią się składowe wynikające z tej zmiany gęstości elektronowych dla monomerów A i B, czyli z poprawki do funkcji falowej pod wpływem zaburzenia \hat{V}_{AB}
- efekty polaryzacyjne pojawiają sie w poprawkach do funkcji falowej od 1., a w poprawkach do energii od 2. rzędu rachunku zaburzeń, np.

$$E^{(2)} = -\sum_{(n,m)\neq(0,0)} \frac{\left|\left\langle \Psi_n^{A} \Psi_m^{B} | \hat{V}_{AB} | \Psi_0^{A} \Psi_0^{B} \right\rangle\right|^2}{(E_n^{A} - E_0^{A}) + (E_m^{B} - E_0^{B})}$$

energię E⁽²⁾ dzielimy na dwa wkłady o nieco różnych fizycznych mechanizmach:
 energię indukcyjną i energię dyspersyjną

$$\begin{split} E^{(2)} &= -\sum_{(n,m)\neq(0,0)} \frac{\left| \left\langle \Psi_n^{A} \Psi_m^{B} | \hat{V}_{AB} | \Psi_0^{A} \Psi_0^{B} \right\rangle \right|^2}{(E_n^{A} - E_0^{A}) + (E_m^{B} - E_0^{B})} \\ &= -\sum_{m>0} \frac{\left| \left\langle \Psi_0^{A} \Psi_m^{B} | \hat{V}_{AB} | \Psi_0^{A} \Psi_0^{B} \right\rangle \right|^2}{(E_m^{B} - E_0^{B})} \qquad E_{\text{ind}}(A \to B) \\ &- \sum_{n>0} \frac{\left| \left\langle \Psi_n^{A} \Psi_0^{B} | \hat{V}_{AB} | \Psi_0^{A} \Psi_0^{B} \right\rangle \right|^2}{(E_n^{A} - E_0^{A})} \qquad E_{\text{ind}}(B \to A) \\ &- \sum_{\substack{n>0}} \frac{\left| \left\langle \Psi_n^{A} \Psi_m^{B} | \hat{V}_{AB} | \Psi_0^{A} \Psi_0^{B} \right\rangle \right|^2}{(E_n^{A} - E_0^{A}) + (E_m^{B} - E_0^{B})} \qquad E_{\text{disp}} \end{split}$$

Energia indukcyjna *E*_{ind} to suma dwóch wkładów:

- $E_{ind}(A \rightarrow B)$ oddziaływanie stałych momentów multipolowych A (ładunku, dipola itd.) z dipolem indukowanym na B pod wpływem pola elektrycznego wytwarzanego przez A
- $E_{ind}(B \rightarrow A)$ oddziaływanie stałych momentów multipolowych B (ładunku, dipola itd.) z dipolem indukowanym na A pod wpływem pola elektrycznego wytwarzanego przez B
- trwały moment multipolowy na A, M^{(l),A}, jest źródłem pola elektrycznego zanikającego z odległością jak 1/R^{l+2}
- pole to indukuje moment dipolowy na B rzędu: μ^B_{ind} ~ α^B × M^{(l),A}/R^{l+2}, gdzie α^B jest statyczną polaryzowalnością dipolową monomeru B
- oddziaływanie indukowanego dipola µ^B_{ind} z indukującym go 2^l-polem jest rzędu

$$E_{\mathrm{ind}}(A \rightarrow B) \sim rac{M^{(l),\mathrm{A}} \mu_{\mathrm{ind}}^{\mathrm{B}}}{R^{l+1+1}} = rac{\left(M^{(l),\mathrm{A}}
ight)^2 lpha^{\mathrm{B}}}{R^{2l+4}}$$

Dla dużych odległości międzymonomerowych R, oba wkłady do E_{ind} zanikają jak

$$E_{
m ind}(A
ightarrow B) \propto rac{1}{R^{2l_{
m A}+4}}, \quad E_{
m ind}(B
ightarrow A) \propto rac{1}{R^{2l_{
m B}+4}}$$

gdzie l_X oznacza, że **najniższy nieznikający moment multipolowy** molekuły X to moment 2^{l_X} -polowy

Ostatecznie

$$E_{
m ind} \propto rac{1}{R^{2l_{
m min}+4}}$$

gdzie l_{\min} to mniejsza z liczb l_A , l_B

- energia indukcyjna jest zawsze ujemna (daje efekt przyciągający)
- dla mniejszych odległości wyższe (niż najniższy nieznikający) multipole dają istotny wkład do energii oddziaływania indukcyjnego
- dla bardzo małych odległości może wystąpić duży, silnie przyciągający wkład krótkozasięgowy (katastrofa polaryzacyjna)

Energia dyspersyjna E_{disp} jest rezultatem oddziaływania indukcyjnego chwilowych multipoli powstających w wyniku kwantowych fluktuacji rozkładu ładunku elektrycznego

odziaływanie chwilowych dipoli

Oddziaływanie chwilowych dipoli daje dla dużych odległości *R* wkład (London):

$$E_{
m disp} \propto rac{1}{R^6} \int_0^\infty lpha^{
m A}(i\omega) lpha^{
m B}(i\omega) \, {
m d}\omega,$$

gdzie $\alpha^X(i\omega)$ jest dynamiczną polaryzowalnością dipolową monomeru X dla urojonej częstości $i\omega$

$$\begin{aligned} \alpha^{\mathbf{X}}(i\omega) &= \sum_{k>0} \left(\frac{\left| \left\langle \Psi_k^{\mathbf{X}} | \mu_x^{\mathbf{X}} | \Psi_0^{\mathbf{X}} \right\rangle \right|^2}{(E_k^{\mathbf{X}} - E_0^{\mathbf{X}}) + i\omega} + \frac{\left| \left\langle \Psi_k^{\mathbf{X}} | \mu_x^{\mathbf{X}} | \Psi_0^{\mathbf{X}} \right\rangle \right|^2}{(E_k^{\mathbf{X}} - E_0^{\mathbf{X}}) - i\omega} \right) \\ &= 2\sum_{k>0} \frac{(E_k^{\mathbf{X}} - E_0^{\mathbf{X}}) \left| \left\langle \Psi_k^{\mathbf{X}} | \mu_x^{\mathbf{X}} | \Psi_0^{\mathbf{X}} \right\rangle \right|^2}{(E_k^{\mathbf{X}} - E_0^{\mathbf{X}})^2 + \omega^2} \end{aligned}$$

$$\int_0^\infty \frac{2a}{a^2 + \omega^2} \frac{2b}{b^2 + \omega^2} \,\mathrm{d}\omega = \frac{2\pi}{a + b}$$

Wykres dynamicznej polaryzowalności dipolowej dla częstości urojonej $i\omega$

Second second second second

Dygresja: Wykres dynamicznej polaryzowalności dipolowej dla częstości rzeczywistej ω

Energia dyspersyjna:

- jest przejawem korelacji elektronowej zachodzącej między oddziałującymi monomerami, czyli oba monomery muszą mieć elektrony
- jest zawsze ujemna (daje efekt przyciągający)
- występuje także dla układów, które nie mają żadnych stałych momentów multipolowych, np. dla oddziaływania między neutralnymi atomami w stanach *S*, m.in. dla gazów szlachetnych

Dla dużych odległości międzymonomerowych R, Edisp zanika jak

$$E_{
m disp} \propto rac{1}{R^6}$$

ponieważ dipole zawsze powstają pod wpływem fluktuacji

Wpływ oddziaływania dyspersyjnego na strukturę DNA

Nieuwzględnienie oddziaływania dyspersyjnego prowadzi do

- zwiększenia odległości między zasadami nukleinowymi
- utraty helikalności
- cząsteczka DNA przybiera strukturę drabinową

Warunki pojawienia się danego typu oddziaływania

elektrostatyczneOBA monomery mają trwałe nieznikające momenty multipoloweindukcyjneprzynajmniej JEDEN monomer ma trwały nieznikający moment
multipolowy, a DRUGI ma elektrony

dyspersyjne OBA monomery muszą mieć elektrony

Układ				$E_{\rm elst}$	$E_{\rm ind}$	$E_{\rm disp}$
А	В	l_{A}	$l_{\rm B}$	$R^{-(l_{\mathrm{A}}+l_{\mathrm{B}}+1)}$	$R^{-(2l_X+4)}$	R^{-6}
He	He	Ø	Ø	Ø	Ø	$R^{-6}(-)$
He	H^+	Ø	0	Ø	$R^{-4}(-)$	Ø
H ₂	H ₂	2	2	$R^{-5}(+/-)$	$R^{-8}(-)$	$R^{-6}(-)$
H_2O	H ₂ O	1	1	$R^{-3}(+/-)$	$R^{-6}(-)$	$R^{-6}(-)$

charakter przyciągający (-), charakter odpychający (+)

Wymuszanie poprawnej symetrii permutacyjnej funkcji falowej

Zdefiniujmy antysymetryzator ($\mathcal{A}^{\dagger} = \mathcal{A}, \mathcal{A}^2 = \mathcal{A}, [\mathcal{A}, \hat{H}] = 0$)

$$\mathcal{A} = \frac{N_{\mathrm{A}}! N_{\mathrm{B}}!}{(N_{\mathrm{A}} + N_{\mathrm{B}})!} (1 + \mathcal{P}) \, \mathcal{A}_{\mathrm{A}} \mathcal{A}_{\mathrm{B}}$$

gdzie

- \mathcal{A}_A i \mathcal{A}_B to antysymetryzatory monomerów A i B; dla Ψ^A i Ψ^B bedących poprawnymi funkcjami monomerów mamy $\mathcal{A}_A \Psi^A = \Psi^A$ i $\mathcal{A}_B \Psi^B = \Psi^B$
- P = -P₁ + P₂ P₃ + ..., zawiera wszystkie permutacje (z odpowiednimi znakami) wymieniające jedną parę (P₁), dwie pary (P₂), itd., elektronów między monomerami [co najwyżej min(N_A, N_B)]

W pierwszym przybliżeniu możemy wtedy obliczyć energię oddziaływania jako

$$E^{(1)} = \frac{\langle \mathcal{A}\Psi_0^{\mathrm{A}}\Psi_0^{\mathrm{B}} | \hat{H} - (E_0^{\mathrm{A}} + E_0^{\mathrm{B}}) | \mathcal{A}\Psi_0^{\mathrm{A}}\Psi_0^{\mathrm{B}} \rangle}{\langle \mathcal{A}\Psi_0^{\mathrm{A}}\Psi_0^{\mathrm{B}} | \mathcal{A}\Psi_0^{\mathrm{A}}\Psi_0^{\mathrm{B}} \rangle} = \frac{\langle \Psi_0^{\mathrm{A}}\Psi_0^{\mathrm{B}} | \hat{V}_{\mathrm{AB}} | \mathcal{A}\Psi_0^{\mathrm{A}}\Psi_0^{\mathrm{B}} \rangle}{\langle \Psi_0^{\mathrm{A}}\Psi_0^{\mathrm{B}} | \mathcal{A}\Psi_0^{\mathrm{A}}\Psi_0^{\mathrm{B}} \rangle}$$

Energię tę możemy przedstawić jako sumę znanej już energii elektrostatycznej E_{elst} i nowego członu — energii wymiennej E_{exch}

$$E^{(1)} = E_{\text{elst}} + E_{\text{exch}}$$
$$E_{\text{elst}} = \langle \Psi_0^{\text{A}} \Psi_0^{\text{B}} | \hat{V}_{\text{AB}} | \Psi_0^{\text{A}} \Psi_0^{\text{B}} \rangle \qquad E_{\text{exch}} = \frac{\langle \Psi_0^{\text{A}} \Psi_0^{\text{B}} | \hat{V}_{\text{AB}} - E_{\text{elst}} | \mathcal{P} \Psi_0^{\text{A}} \Psi_0^{\text{B}} \rangle}{1 + \langle \Psi_0^{\text{A}} \Psi_0^{\text{B}} | \mathcal{P} \Psi_0^{\text{A}} \Psi_0^{\text{B}} \rangle}$$

Energia wymienna E_{exch} jest rezultatem zasady Pauliego oraz tunelowania elektronów pomiędzy oddziałującymi atomami lub molekułami

- dominuje dla małych odległości ale jest krótkozasięgowa — zanika wykładniczo z odległością jak $R^{\gamma} e^{-\alpha R}$
- jest proporcjonalna do całki nakrywania się gęstości elektronowej $\rho_{\rm el}^{\rm A}(\vec{r})$ monomeru A z gęstością elektronową $\rho_{\rm el}^{\rm A}(\vec{r})$ monomeru B

$$E_{\rm exch} \propto \int \rho_{\rm el}^{\rm A}(\vec{r}) \rho_{\rm el}^{\rm B}(\vec{r}) \, \mathrm{d}\vec{r}$$

- w przypadku układów zamkniętopowłokowych jest zawsze dodatnia (odpychająca) — molekuły i atomy zamkniętopowłokowe odpychają się na małych odległościach właśnie dzięki siłom wymiennym
- jest trudna do dokładnego obliczenia (trudniejsza niż inne wkłady do energii oddziaływania), szczególnie dla dużych *R*

Składowe energii oddziaływania dla dimeru helu

- energia oddziaływania elektrostatycznego $E_{\text{elst}}^{(1)}$ oznaczona jest tu jako $E_{\text{pol}}^{(1)}$
- symbole E⁽²⁾_{exch-ind} i E⁽²⁾_{exch-disp} oznaczają (bardzo małe) składowe wymienno-indukcyjną i wymienno-dyspersyjną

Składowe energii oddziaływania dla dimeru wody

Modele potencjału oddziaływania V(R)

Krzywa Morse'a:

$$V(R) = D_e \left[e^{-2a(R-R_e)} - 2e^{-a(R-R_e)} \right]$$

gdzie D_e (głebokość minimum), R_e (położenie minimum) i *a* są parametrami dopasowania. Dla krzywej Morse'a znane jest analityczne rozwiązanie równania Schrödingera.

- dobry do obliczeń widm wibracyjnych cząsteczek, do przewidywania własności kryształów
- dla $R \rightarrow 0$ ma skończoną wartość, więc nie opisuje odpychania jąder
- dla dużych odległości zanika do zera eksponencjalnie, zamiast jak wielomian w 1/*R*, więc nie nadaje się do zastosowań, gdzie istotny jest poprawny opis zachowania dalekozasięgowego

Modele potencjału oddziaływania V(R)

W symulacjach komputerowych popularny jest tani do wielokrotnego obliczania potencjał Lennard-Jonesa (potencjał 12-6):

$$V(R) = 4\varepsilon \left[\left(\sigma/R \right)^{12} - \left(\sigma/R \right)^{6} \right]$$

gdzie ε i σ są parametrami dopasowania (dla $R_{\min} = \sqrt[6]{2}\sigma$ potencjał ma minimum, $V(R_{\min}) = -\varepsilon$)

- przyciągający człon $1/R^6$ modeluje dyspersję dipol-dipol
- odpychający człon 1/R¹² nie ma uzasadnienia fizycznego (można wybrać dowolną potęgę > 6); wybór podyktowany wygodą numeryczną
- jeśli w układzie występuje oddziaływanie ładunek-dipol brakuje członu 1/R⁴

Modele potencjału oddziaływania V(R)

W bardzo dokładnych obliczeniach stosuje się bardziej realistyczny i dużo dokładniejszy potencjał wynikający z teorii SAPT:

$$V(R) = e^{-\alpha R} \left(P_{-1} R^{-1} + P_0 + P_1 R + P_2 R^2 \right) - \sum_n C_n f_n(\eta R) / R^n,$$

gdzie C_n są stałymi asymptotycznymi (obliczonymi niezależnie lub dofitowanymi), α , η i P_i są parametrami dopasowania, a $f_n(x)$ jest funkcją tłumiącą Tanga-Toenniesa

$$f_n(x) = 1 - e^{-x} \sum_{k=0}^n \frac{x^k}{k!}$$

o własnościach

$$\lim_{x \to 0} f_n(x) = O(x^{n+1}), \quad \lim_{x \to \infty} f_n(x) = 1$$

Różne: Oddziaływanie rezonansowe

• oddziaływanie to występuje pomiędzy

2) jeśli znajdują się w **różnych** stanach kwantowych Ψ_i i Ψ_j

• funkcja falowa dimeru AB dla dużych odległości nie jest wówczas iloczynem funkcji monomerów $\Psi_i^A \Psi_j^B$ lecz jest superpozycją dwóch struktur rezonansowych

$$\Psi^{\rm AB} = \frac{1}{\sqrt{2}} \left(\Psi_i^{\rm A} \Psi_j^{\rm B} \pm \Psi_j^{\rm A} \Psi_i^{\rm B} \right)$$

• jest to oddziaływanie dalekozasięgowe — zanika z odległością jak $1/R^{2l+1}$

$$E_{
m res} \propto rac{\left| \langle \Psi_i | \hat{M}_m^{(l)} | \Psi_j
angle
ight|^2}{R^{2l+1}}$$

gdzie *l* jest najmniejszą możliwą wartością, dla której element macierzowy w liczniku nie znika

• jeśli przejście dipolowe jest dozwolone, czyli l = 1, to oddziaływanie rezonansowe zanika jak $1/R^3$

Różne: Oddziaływanie Casimira (retardacyjne)

- jest to oddziaływanie typu dyspersyjnego wynikające ze skończonej wartości prędkości śwatła (efekt relatywistyczny); oddziaływanie przenoszone jest przez wymianę wirtualnych fotonów
- dla małych odległości R oddziaływanie to maleje jak c⁻²/R⁴, gdzie c to prędkość światła; jest to wtedy bardzo mała poprawka do oddziaływania dyspersyjnego
- dla bardzo dużych odległości (R > 100 bohr) efekt relatywistyczny całkowicie kasuje nierelatywistyczne oddziaływanie dyspersyjne (Londona) i energia oddziaływania maleje jak $1/R^7$, a w szczególości jak

$$E_{
m int} \propto rac{c \, lpha_{
m A}(0) lpha_{
m B}(0)}{R^7}$$

- osłabienie oddziaływania o jedną potęgę R wynika z faktu, że dipol indukowany oddziałuje z opóźnieniem z dipolem indukującym, który zdążył się już troche w tym czasie przekręcić
- oddziaływanie odkryto w latach 40-tych (Vervey i Overbeek) badając własności koloidów; teoretyczne wyjaśnił je Hendrik Casimir w 1948 roku jako efekt skończonej prędkości światła

Różne: Oddziaływanie van der Waalsa atomu z powierzchnią

 w przypadku oddziaływania atomu z dwuwymiarową cienką płaszczyzną, np. grafenem, zależność od odległości mnoży się przez R² (wynika to z całkowania po tej płaszczyźnie); zależność energii oddziaływania od odległości R od tej płaszczyzny ma wówczas postać

$$E_{
m int}^{
m atom-plaszczyzna} \propto rac{1}{R^4}$$

• w przypadku oddziaływania atomu z powierzchnią i wnętrzem ciała stałego, np. kryształu, zależność od odległości mnoży się przez *R*³ (wynika to z całkowania po półprzestrzni zajętej przez to ciało stałe

$$E_{\rm int}^{\rm atom-powierzchnia} \propto rac{1}{R^3}$$

gdzie R jest odległością atomu od powierzchni ciała

• efekt retardacji osłabia te oddziaływania o jedną potęgę *R* tak jak w przypadku odddziaływania atom-atom

$$E_{
m int,ret}^{
m atom-plaszczyzna} \propto rac{1}{R^5}, \qquad E_{
m int,ret}^{
m atom-powierzchnia} \propto rac{1}{R^4}$$

Różne: Oddziaływanie van der Waalsa ciał makroskopowych

- w przypadku oddziaływania dwóch powierzchni płaskich (półprzestrzeni), np. kryształów, zależność od ich odległości mnoży się dodatkowo przez *R* (wynika to z sumowania (całkowania) po wnętrzu kryształu
- zależność energii oddziaływania od odległości R pomiędzy kontaktującymi się powierzchniami ma wówczas postać

$$E_{\rm int}^{
m powierzchnia-powierzchnia} \propto rac{1}{R^2}$$

jest to energia na jednostkę powierzchni kontaktu — w przeciwnym przypadku energia ta byłaby nieskończona

• efekt retardacji osłabia tę energię oddziaływania o jedną potęgę *R*, tak jak w przypadku odddziaływania atom-atom czy atom-powierzchnia

$$E_{
m int,ret}^{
m powierzchnia-powierzchnia} \propto rac{1}{R^3}$$

 wzory te, wynikające z sumowania oddziaływań van der Waalsa 1/R⁶, zostały potwierdzone doświadczalnie