
Diagonalization, eigenvalues problem, secular equation

Diagonalization procedure of a matrix A with dimensionality n×n (e.g. the Hessian matrix)

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

... ... ... ...

an1 an2 . . . ann


consists in finding a matrix C such, that the matrix D=C−1AC is diagonal:

C−1AC = D =


d1 0 . . . 0

0 d2 . . . 0

... ... ... ...

0 0 . . . dn


Equation C−1AC=D can also be written as

AC = CD

Denoting the elements of matrix C by cij and using te fact that D is diagonal (i.e., its elements

dij are of the form djδij, where δij denotes the Kronecker delta, δii=1 i δij=0 for i 6=j) we

obtain

(AC)ij =
∑
k

aik ckj (CD)ij =
∑
k

cik dkj =
∑
k

cik dj δkj = djcij



Diagonalization, eigenvalues problem, secular equation

Employing the equation (AC)ij = (CD)ij we obtain∑
k

aik ckj = djcij

In matrix notation this equation takes the form

ACj = dj Cj

where Cj is the jth column of matrix C. This is equation for the eigenvalues (dj)

and eigenvectors (Cj) of matrix A. Solving this equation, that is the solving

the so called eigenproblem for matrix A, is equivalent to diagonalization of matrix A.

This is because the matrix C is built from the (column) eigenvectors C1, C2, . . . , Cn:

C = [C1, C2, . . . , Cn]

The equation for eigenvectors can also be written as (A − dj E)Cj = 0, where E is the unit

matrix with elements δij. This equation has a solution only if the determinant of the matrix

A− dj E vanishes

|A− djE| = 0

This is the very important and practically useful secular equation for eigenvaules dj.



Hartree-Fock Theory

The wave function Φ in the Hartree-Fock theory is a Slater determinant

Φ(1, 2, . . . , N) =
1
√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ1(2) . . . φ1(N)

φ2(1) φ2(2) . . . φ2(N)

... ... ... ...

φN(1) φN(2) . . . φN(N)

∣∣∣∣∣∣∣∣∣∣∣
built from molecular spinorbitals φk(i)=φk(~ri, σi)=φk(xi, yi, zi, σi). Symbolically:

Φ =| φ1 φ2 φ3 . . . φN |

Molecular spinorbitals φi are determined by minimalization of the energy functional:

E[Φ] =

∫
Φ∗ĤΦdτ

where Ĥ is the electronic Hamiltonian of a molecule.
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Hartree-Fock Theory, continued

• RHF (Restricted Hartree-Fock) Method

For 6 electrons it is sufficient to use 3 or 4 orbitals: ψ1, ψ2, ψ3, i ψ4

Singlet states: Φ =| ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β |
Triplet states: Φ =| ψ1α ψ1β ψ2α ψ2β ψ3α ψ4α |

(because of double occupancy of orbitals).

• UHF (Unrestricted Hartree-Fock) Method

For 6 electrons one has to use 6 orbitals:

Singlet state: Φ =| ψ1α ψ
′
1β ψ2α ψ

′
2β ψ3α ψ

′
3β |

Triplet state: Φ =| ψ1α ψ
′
1β ψ2α ψ

′
2β ψ3α ψ4α |

(because different orbitals for different spins are used)

Both methods are employed in practice. Both have advantages and disadvantages.

The RHF method is simpler, gives a state of a well defined, pure spin, but fails to correctly

describe chemical bond dissociation.

The UHF is more time-consuming, correctly describes chemical bond dissociation, but gives

states of undefined spin (spin contamination) and (often) artifacts on potential energy surfaces.



Hartree-Fock equations

f̂φk = εkφk

where εk is the so-called orbital energy and f̂ is the Fock operator

f̂ = ĥ+ Ĵ − K̂

ĥ denotes the sum of the kinetic energy operator and the attractive nuclear potential:

ĥ = −
1

2
∆−

∑
j

Zj

|~r − ~Rj|

The Coulomb Ĵ and exchange K̂ operators are more complicated. The Coulomb operator

Ĵ depends linearly on the electron density ρ(~r) defined as :

ρ(~r, σ) =
occ∑
k

φ2
k(~r, σ)

In particular Ĵ represents the multiplication by the averaged potential j(~r) of the electron

cloud:

j(~r) =

∫
1

|~r − ~r ′|
ρ(~r ′)d~r ′ (1)



Hartree-Fock equations, continued

The exchange operator K̂ is more complicated. This is an integral operator depending on all

occupied orbitals:

(K̂ψ)(~r) =
occ∑
k

∫
φk(~r

′)
1

|~r − ~r ′|
ψ(~r ′)d~r ′ φk(~r) (2)

(you do not have to memoraize this formula).

The Hartree-Fock energy EHF is computed in the following way:

EHF =

∫
ΦĤΦdτ =

∑
i

εk −
1

2

∑
k

(Jkk −Kkk) (3)

where

Jkk =

∫
φkĴφkdτ Kkk =

∫
φkK̂φkdτ (4)

are the Coulomb and exchange integrals, respectively.

Very important in applications is the Koopmans theorem concerning the ionization potential

(IP) and the electron affinity (EA) of an atom or a molecule:

IP. = −εHOMO EA = εLUMO

where HOMO denotes the highest occupied and LUMO the lowest unoccupied molecular

orbital (MO).



LCAO MO Method. Roothaan Equations

In the LCAO MO method the molecular spinorbitals are represented as linear combinations

of atomic spinorbitals χj(~r, σ):

φk(~r, σ) =
2M∑
j=1

Cjk χj(~r, σ)

Spinorbitals χj are not exact atomic spinorbitals but to a large extent arbitrary functions

(basis functions) localized on atomic centers in a molecule.

In particular, the functions χj are expressed through M functions (orbitals) of an atomic basis

bj(~r):

χ2j−1(~r, σ) = bj(~r)α(σ) χ2j(~r, σ) = bj(~r)β(σ)

The choice of the atomic basis bj(~r) and ist size M determine the accuracy of calculations.

The linear coefficients Cjk and orbital energies εk are found by solving the Roothaan equations:

FCk = εkSCk

where F is the Fock matrix, S is the overlap matrix , and Ck is the kth column of matrix C

Fij =

∫
χ∗i f̂χjdτ Sij =

∫
χ∗iχjdτ
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The SCF Method

In practice the Roothaan equations FCk = εkSCk are solved iteratively.

In the nth iteration we diagonalize the Fock matrix F computed using the orbitals from the

(n− 1)th iteration.

The most time-consuming step is the calculation of M4/8 two-electron integrals (including

four-center ones):

〈pq|rs〉 =

∫ ∫
b∗p(~r1) b

∗
q(~r2)

1

|~r1 − ~r2|
br(~r1) bs (~r2) dτ1dτ2

needed to form the Fock matrix F (remember that f̂ = ĥ+ Ĵ − K̂).

The choice of the atomic basis bj(~r) and ist size M determine the accuracy of calculations.

Each kind of an atom requires different basis. Up to now hundreds of basis sets have been

developed.

Initially Slater basis sets , mainly minimal Slater bases were used:

Snlm(~r) = rn−l e−ζr Ylm(θ, φ)

For instance, for atoms Li to Ne, the minimal basis (MBS) consists of only 5 functions:

1s = e−ζr 2s = r e−ζr 2px = x e−ζr 2py = y e−ζr 2px = z e−ζr



Gaussian Bases

In 1950 Frank Boys made a breakthrough discovery. He observed that the product of Gaus-

sian functions, e−γr
2
, localized on different atoms is again a Gaussian function (localized at a

point between them).

Due to this property all two-electron integrals, including the four-center ones are expressible

through very simple, closed form formulas and can be quickly computed.

Boys proposed to use in SCF calculations the Gaussian basis functions of the following general

form:
Gpqs(~r) = xp yq zs e−γr

2

In particular, the 1s i 2p Gaussian functions are of the form:

1s = e−γr
2

2px = x e−γr
2

2py = y e−γr
2

2px = z e−γr
2

There are two kinds of d functions. We use either the 5 spherical Gaussian functions :

G3d,m(~r) = r2 e−γr
2
Y2m(θ, φ)

or the 6 Cartesian ones

dx2 =x2e−γr
2

dy2 =y2e−γr
2

dz2 =z2e−γr
2

dxy=xye−γr
2

dxz=xze−γr
2

dyz=yze−γr
2

The Gaussian functions of the type 2s, 3p, 4d, etc, (with odd powers of r) are not used.
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Hierarchy of Gaussian Bases (1)

To correct the wrong behavior of Gaussian functions at small r one uses contracted bases.

cj(~r) =
K∑
n=1

cnj e
−γnjr2

where e−γnjr
2

are the so-called primitive functions, cnj are the contraction coefficients, and

cj(~r) is the K-term contracted function.

The contraction coefficients cnj are chosen such that cj(~r) optimally approximates Slater or-

bitals.





Hierarchy of Gaussian Bases (2)

To correct the wrong behavior of Gaussian functions at small r one uses contracted bases.

cj(~r) =
K∑
n=1

cnj e
−γnjr2

where e−γnjr
2

are the so-called primitive functions, cnj are the contraction coefficients,

and cj(~r) is the K-term contracted function.

The contraction coefficients cnj are chosen such that cj(~r) optimally approximates Slater

orbitals.

Examples of contracted minimal bases: (2s1p bases for atoms Li through Ne:

K=3 → STO-3G

K=4 → STO-4G

K=5 → STO-5G

Using the STO-3G basis Boys obtained θ=129o for the CH2 radical contradicting Herzberg’s

experimental (spectroscopic) determination θ=180o.

Using also the STO-3G basis Pople obtained very good structural prediction for C4H6
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Hierarchy of Gaussian Bases (3)

To correct the wrong behavior of Gaussian functions at small r one uses contracted bases.

cj(~r) =
K∑
n=1

cnj e
−γnjr2

where e−γnjr
2

are the so-called primitive functions, cnj are the contraction coefficients,

and cj(~r) is the K-term contracted function.

The contraction coefficients cnj are chosen such that cj(~r) optimally approximates Slater

orbitals.

Examples of contracted minimal bases: (2s1p bases for atoms Li through Ne):

K=3 → STO-3G

K=4 → STO-4G

K=5 → STO-5G

Double ζ bases (DZ), (4s2p for atoms Li through Ne).

Polarized bases DZP, TZP, etc. (4s2p1d, 6s3p1d, etc. for atoms Li through Ne) .

Notation:

Basis 4s2p1d (that is the DZP basis) obtained from the contraction of 9 s functions, 5 p

functions p and 2 d functions is denoted by (9s5p2d/4s2p1d) and its contraction scheme by

[6111/41/2]



Angle between the OH bonds in the water molecule

STO-4G 100o

DZ 113o

DZP 106o

TZ2P 106.3o

HF 106.4o

exptl 104.5o



Hierarchy of Gaussian Bases (4)

Minimal bases

- STO-3G (6s3p/2s1p)

- STO-4G (8s4p/2s1p)

- STO-5G (10s5p/2s1p)

Double ζ bases

- DZ e.g. (9s5p/4s2p)

Triple ζ bases

- TZ e.g. (11s7p/6s3p)

Polarized bases

- DZP e.g. (9s5p2d/4s2p1d)

- TZP e.g. (11s7p/2d/6s3p1d)

- TZ2P e.g. (11s7p/3d/6s3p2d)

Pople’s bases (“Split-valence”)

e.g.. 6-31G that is valence DZ, (10s4p/3s2p) - with contraction [631/31]

Dunning’s bases (“correlation consistent (cc)”)
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