Diagonalization, eigenvalues problem, secular equation

Diagonalization procedure of a matrix A with dimensionality n X n (e.g. the Hessian matrix)

ai

a1

ani1

consists in finding a matrix C such, that the

C'AC =D =

Equation C~1AC=D can also be written as

AC

ai2 A1n
a2 A2n
alnz L ] [ ] [ ] alnn _

matrix D=C~1AC is diagonal:

d 0 ... 0

0 do ... O
| 0 0 ... dn_
=CD

Denoting the elements of matrix C by c;; and using te fact that D is diagonal (i.e., its elements
d;; are of the form d;d;;, where J;; denotes the Kronecker delta, d;,=1 i §;;=0 for i7#j) we

obtain

(AC)U == Z a;r ij (CD)ZJ = Z Cik dkj = Z Cik dj dkj = djcij
k k k



Diagonalization, eigenvalues problem, secular equation

Employing the equation (AC);; = (CD),; we obtain
Z @ik Crj = djCij
k

In matrix notation this equation takes the form

where C; is the jth column of matrix C. This is equation for the eigenvalues (d;)
and eigenvectors (C;) of matrix A. Solving this equation, that is the solving

the so called eigenproblem for matrix A, is equivalent to diagonalization of matrix A.
This is because the matrix C is built from the (column) eigenvectors C;,Cs,...,Cy:

C: [Cl,Cz,...,Cn]

The equation for eigenvectors can also be written as (A — d; E) C; = 0, where E is the unit

matrix with elements 9;;. This equation has a solution only if the determinant of the matrix
A — d; E vanishes

A —d;E| =0

This is the very important and practically useful secular equation for eigenvaules d;.




Hartree-Fock Theory

The wave function ¢ in the Hartree-Fock theory is a Slater determinant

®1(1) ¢1(2) ... ¢1(IN)
1 ®2(1) ¢2(2) ... @2(N)

&(1,2,...,N) =

on(1l) on(2) ... dN(IN)
built from molecular spinorbitals ¢ (2)=¢r(7;, ;) =dr(x;, yiy 2i, ;). Symbolically:

(I):| ¢1¢2¢3---¢N|

Mbolecular spinorbitals ¢; are determined by minimalization of the energy functional:
E[®] = / O*HIdT

where H is the electronic Hamiltonian of a molecule.
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Hartree-Fock Theory, continued

e RHF (Restricted Hartree-Fock) Method

For 6 electrons it is sufficient to use 3 or 4 orbitals: ¥, V2, V3, 1 Y4

Singlet states: P =| Y1 Y18 Yo P28 Y3 Y30 |
Triplet states: ¢ =| Y1 Y16 Pox Y28 Y3 Py |

(because of double occupancy of orbitals).

e UHF (Unrestricted Hartree-Fock) Method

For 6 electrons one has to use 6 orbitals:

Singlet state: ¢ =| P P18 P P58 Yo P30 |
Triplet state: ¢ =| Y1 Y16 P Yo 8 Y3 Yuox |

(because different orbitals for different spins are used)

Both methods are employed in practice. Both have advantages and disadvantages.

The RHF method is simpler, gives a state of a well defined, pure spin, but fails to correctly
describe chemical bond dissociation.

The UHF is more time-consuming, correctly describes chemical bond dissociation, but gives
states of undefined spin (spin contamination) and (often) artifacts on potential energy surfaces.



Hartree-Fock equations

for = endn

where ¢; is the so-called orbital energy and f is the Fock operator

A

f=h+J-K

h denotes the sum of the kinetic energy operator and the attractive nuclear potential:

o ey

|"°—

The Coulomb J and exchange K operators are more complicated. The Coulomb operator
J depends linearly on the electron density p(7) defined as :

occ

p(F0) = 3 $2(7 o)

In particular J represents the multiplication by the averaged potential j(#) of the electron
cloud:

i _/V P (F)aF (1)



Hartree-Fock equations, continued

The exchange operator K is more complicated. This is an integral operator depending on all
occupied orbitals:

(Ke)(7) = / D) o B )AT () )

(you do not have to memoraize this formula).
The Hartree-Fock energy Eyp is computed in the following way:
. 1
EHF = /(I)H(I)ClT = Zé‘k — 5 Z(Jkk — Kk:k:) (3)

k
where

Jek = /¢kj¢kd7' Ky, = /Cbkkﬁbde (4)

are the Coulomb and exchange integrals, respectively.

Very important in applications is the Koopmans theorem concerning the ionization potential
(IP) and the electron affinity (EA) of an atom or a molecule:

IP. = —enonmo EA = erLumo

where HOMO denotes the highest occupied and LUMO the lowest unoccupied molecular
orbital (MO).



LCAO MO Method. Roothaan Equations

In the LCAO MO method the molecular spinorbitals are represented as linear combinations
of atomic spinorbitals x; (7, o):

2M
or(Ty0) = Y Cji x;(F,0)
j=1

Spinorbitals x; are not exact atomic spinorbitals but to a large extent arbitrary functions
(basis functions) localized on atomic centers in a molecule.

In particular, the functions x; are expressed through M functions (orbitals) of an atomic basis

b;(7):
X2j-1(7; o) = bj(F)a(o) x2; (7, o) = b;(T) B(o)
The choice of the atomic basis b;(7) and ist size M determine the accuracy of calculations.

The linear coefficients C};, and orbital energies ¢, are found by solving the Roothaan equations:
FCk = EkSCk

where F' is the Fock matrix, S is the overlap matrix , and C} is the kth column of matrix C

F;j = /XffdeT Sij = /X:deT
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The SCF Method

In practice the Roothaan equations F'C, = ¢, SC} are solved iteratively.

In the nth iteration we diagonalize the Fock matrix F' computed using the orbitals from the
(n — 1)th iteration.

The most time-consuming step is the calculation of M*/8 two-electron integrals (including
four-center ones):

(pq|’l"8> = // b*(Tl) b*(’r‘z) br(’f"l) bs (7?2) d’TldTQ

|71 — 73]
needed to form the Fock matrix F (remember that f = h + J — K).

The choice of the atomic basis b;(7) and ist size M determine the accuracy of calculations.

Each kind of an atom requires different basis. Up to now hundreds of basis sets have been
developed.

Initially Slater basis sets , mainly minimal Slater bases were used:

Snlm(F = ’I“n_l e—C'P }flm(aa ¢)

For instance, for atoms Li to Ne, the minimal basis (MBS) consists of only 5 functions:

r r

1s = e ¢" 2s =re ¢ 2p, = xe ¢ 2p, =y e " 2p, = ze ¢



Gaussian Bases

In 1950 Frank Boys made a breakthrough discovery. He observed that the product of Gaus-
sian functions, e_'Y"°2, localized on different atoms is again a Gaussian function (localized at a
point between them).

Due to this property all two-electron integrals, including the four-center ones are expressible
through very simple, closed form formulas and can be quickly computed.

Boys proposed to use in SCF calculations the Gaussian basis functions of the following general

form: \
— s ,—r
Gpgs(¥) = 2Pyl z° e

In particular, the 1s i 2p Gaussian functions are of the form:
1s = e " 2p, = e 2p, =y e 2P, = Z e’
There are two kinds of d functions. We use either the 5 spherical Gaussian functions :

— 2 _—~r2
G3d’m(’r) =r‘e’ Y2m(9? ¢)
or the 6 Cartesian ones
_ 2 _ 2 . 2 _ 2 . 2 _ 2
d=x’e " d,2= y2e " d.=2z%"" dpy=xye " d,,=xze " dy.=yze "

The Gaussian functions of the type 2s, 3p, 4d, etc, (with odd powers of r) are not used.
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Fig. 4. Unit exponent normalized GTO and STO. Solid line: GTO; Dashed line: STO.
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Fig. 5. Optimum GTO for H 1s. Solid line: GTO; Dashed line: STO.



Hierarchy of Gaussian Bases (1)

To correct the wrong behavior of Gaussian functions at small » one uses contracted bases.

K
2
(7 — 5 —YnjT
cj(r = E Cnj e
n=1

—_— . 2 L] . . . L) (]
where e 7" are the so-called primitive functions, ¢,; are the contraction coefficients, and
c;(7) is the K-term contracted function.

The contraction coefficients c¢,; are chosen such that c;(7) optimally approximates Slater or-
bitals.



Fig. 6. Four-term GTO expansion for H 1s. Solid line: GTO; Dashed line: STO,



Hierarchy of Gaussian Bases (2)

To correct the wrong behavior of Gaussian functions at small » one uses contracted bases.

K
2
(7 — 5 —YnjT
cj(r = E Cnj e
n=1

g2 C e . . .
where e” 7" are the so-called primitive functions, c,; are the contraction coefficients,
and c;(7) is the K-term contracted function.

The contraction coefficients ¢,; are chosen such that c¢;(7) optimally approximates Slater
orbitals.

Examples of contracted minimal bases: (2slp bases for atoms Li through Ne:

K=3 — STO-3G
K=4 — STO0-4G
K=5 — STO-5G

Using the STO-3G basis Boys obtained 6=129° for the CH, radical contradicting Herzberg’s
experimental (spectroscopic) determination 6=180°.

Using also the STO-3G basis Pople obtained very good structural prediction for C;Hg
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Fig. 3. The methylenecyclopropane molecule (C5, symmetry), for which a complete ab
initio structure determination was reported in 1975 and is seen in Table 3.



Table 3. Minimum basis set (MBS) self-consistent-field (SCF) geometry prediction
compared with experiment for methylenecyclopropane (see Fig. 3).

Parameter STO-3G | Experiment
rC(1)=C(2) (A) 1.298 1.332
rCz)Ca) (A) 1474 1457
rCaCy (A) | 1522 1.542
rCay-Hyy (A) 1.083 1.088
rCia-Hig) (A) 1.083 1.09

0H4)-CayHpgy (°) | 1160 1143
0H3)-Cpy-Huy (°) | 1136 113.5
0H3)-Ca)-Cryy (°) | 1494 1508




Hierarchy of Gaussian Bases (3)

To correct the wrong behavior of Gaussian functions at small » one uses contracted bases.
K
2
(7)) — o ng"
c;(T) = g Cnj€ T
n=1

— . 2 L] L] L] L] L] L]
where e” 7" are the so-called primitive functions, c,; are the contraction coefficients,
and c;(7) is the K-term contracted function.

The contraction coefficients ¢,; are chosen such that c¢;(¥) optimally approximates Slater
orbitals.

Examples of contracted minimal bases: (2s1p bases for atoms Li through Ne):

K=3 — STO-3G
K=4 — STO-4G
K=5 — STO-5G

Double ¢ bases (DZ), (4s2p for atoms Li through Ne).
Polarized bases DZP, TZP, etc. (4s2pld, 6s3pld, etc. for atoms Li through Ne) .

Notation:

Basis 4s2pld (that is the DZP basis) obtained from the contraction of 9 s functions, 5 p
functions p and 2 d functions is denoted by (9s5p2d/4s2pl1d) and its contraction scheme by
[6111/41/2]



Angle between the OH bonds in the water molecule

STO-4G 100°
DZ 113°
DZP 106°
TZ2P 106.3°
HF 106.4°

exptl 104.5°




Hierarchy of Gaussian Bases (4)

Minimal bases

- STO-3G (6s3p/2slp)
- STO-4G (8s4p/2slp)
- STO-5G (10s5p/2slp)

Double ¢ bases
- DZ e.g. (9s5p/4s2p)
Triple ¢ bases
- TZ e.g. (11s7p/6s3p)
Polarized bases
- DZP e.g. (9s5p2d/4s2pld)
- TZP e.g. (11s7p/2d/6s3pld)
- TZ2P e.g. (11s7p/3d/6s3p2d)
Pople’s bases (“Split-valence”)
e.g.. 6-31G that is valence DZ, (10s4p/3s2p) - with contraction [631/31]

Dunning’s bases (“correlation consistent (cc)”)



Pople basis sets

21G

21G* - Polarized

21+G - Diffuse functions

%%EG* - With polarization and diffuse functions

2.
3
5
3-
4-
4-
6-21G
6-
6-
6-
6-
6-
6-
6-

31+G*
31G(3df, 3pd)

The 6-31G* basis set (defined for the atoms H through Zn) is a valence double-zeta
polarized basis set that adds to the 6-31G set six d-type Cartesian-Gaussian polarization
functions on each of the atoms Li through Ca and ten f-type Cartesian Gaussian
polarization functions on each of the atoms Sc through Zn.
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Fig. 4. Self-consistent-field predictions of the transition state geometry for the HONC —
HOCN unimolecular rearrangement. Bond distances are in A. It is seen that in this case
the transition state structure is strongly dependent on the basis set chosen.



