
Electron correlation. Method of configuration interaction (CI)

Spinorbitals: occupied φa and virtual φr: εa ≤ εHOMO, εr ≥ εLUMO

Operator of single excitations, êra performs the substitution φa→ φr, e.g.,

ê7
2 |φ1 φ2 φ3 . . . φN |=|φ1 φ7 φ3 . . . φN |

Operator of double excitations, êrsab = êra ê
s
b, performs a double substitution:

ê79
13 |φ1 φ2 φ3 . . . φN |=|φ7 φ2 φ9 . . . φN |

Singly excited determinants: Φr
a = êra Φ0, where Φ0 is a reference (HF) function

Doubly Φrs
ab = êrsab Φ0 and triply Φrst

abc = êrstabc Φ0 excited determinants

The linear combination of Φ0 and excited determinants ΦI is the CI function:

Ψ = c0Φ0 +
∑
I

cIΦI

In practice the CI function can include single excitations (CIS), single- and
double excitations (CISD) as well as all excitations though triple (CISDT) and
quadruple (CISDTQ) ones.

S=single, D=double, T=triple, Q=quadruple (excitations)



Most important variants of the CI method

CIS Method:
Ψ = c0Φ0 +

∑
ar

car Φr
a

If Φ0 is the HF determinant we obtain zero as the correlation energy because
of the important Brillouin Theorem∫

Φr
aĤΦ0dτ =0 or 〈Φr

a|ĤΦ0〉=0, notation:

∫
Ψ∗1 Ψ2 dτ ≡ 〈Ψ1|Ψ2〉

However, the CIS method gives often quite good electronic excitation energies.

CISD Method:
Ψ = c0Φ0 +

∑
ar

car Φr
a +

∑
a<b

∑
r<s

cabrs Φrs
ab

Is today rather infrequently used because it is not size-consistent. The same
applies to the slightly more accurate CISDT method and to much more accu-
rate CISDTQ method.

Full CI (FCI) Method
Ψ = c0Φ0 +

∑
I

cIΦI

includes all determinants (∼MN) one can construct for N electrons using the
basis of M orbitals. This method is most accurate but it is the most expensive.



Equations of the CI method

Ψ = c0Φ0 +
∑
ar

car ê
r
a Φ0 +

∑
a<b

∑
r<s

cabrs ê
rs
ab Φ0 + · · ·

We impose the intermediate normalization 〈Φ0|Ψ〉=1. Then c0=1 and

Ψ = (1 +
∑
ar

car ê
r
a +

∑
a<b

∑
r<s

cabrs ê
rs
ab + · · ·) Φ0 = (1 + Ĉ)Φ0

where Ĉ is the CI operator:

Ĉ =
∑
ar

car ê
r
a +

∑
a<b

∑
r<s

cabrs ê
rs
ab + · · · = Ĉ1 + Ĉ2 + · · ·

The Ĉ operator should satisfy the Schrödinger equation:

(Ĥ − E)(1 + Ĉ)Φ0 = 0,

This is not possible, therefore we use the Galerkin-Pietrow method, that is
we equate to zero the projections of the l.h.s. on the basis functions ΦI:

〈ΦI|(Ĥ − E)(1 + Ĉ)Φ0〉 = 0

E = 〈Φ0|Ĥ(1 + Ĉ)Φ0〉



Equations of the CI method, continued

The final CI equations (for the Ĉ operator) are

〈ΦI|(Ĥ − E)Ĉ)Φ0〉 = −〈ΦI|ĤΦ0〉

where
E = EHF + 〈Φ0|ĤĈ2Φ0〉

and
Ĉ = Ĉ1 + Ĉ2 + · · ·+ ĈK.

Accuracy of the variants of the CI method

Metoda CI Operator Ĉ Cost Error FH Error H2O

CID Ĉ2 n6 10.3 13.7

CISD Ĉ1 + Ĉ2 n6 9.4 12.9

CISDT Ĉ1 + Ĉ2 + Ĉ3 n8 7.0 10.6

CISDTQ Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4 n10 0.3 0.4

FCI Ĉ1 + Ĉ2 + Ĉ3 + · · ·+ ĈN nN 0.0 0.0

DZP Basis. Errors in millihartree, 1 mhartree = 0.627 kcal/mol.



Møller-Plesset Perturbation Theory (MP Theory)

Problems with the CI:

• slow convergence when the multiplicity of the excitations K increases

• lack of the size consistency when K < N

• lack of the extensivity of the correlation energy for crystals and polymers
(the correlation energy grows as

√
L, where L is the number of atoms in

the system)

The MP theory is free from these problems. In this theory the Hamiltonian
is partitioned as:

Ĥ = Ĥ(λ) = Ĥ0 + λŴ

where
Ĥ0 =

N∑
i=1

f̂(~ri)

is the sum of the Fock operators for all electrons and Ŵ = Ĥ − Ĥ0.
It is essential that:

Ĥ0Φ0 = E0Φ0

where Φ0 is the HF function and E0 is the sum of the occupied orbital energies
E0 =

∑
a εa. The perturbation Ŵ is a two-body operator Ŵ =

∑
ij g(~ri, ~rj).



MP Theory, continued

After substituting Ĥ → Ĥ(λ) in the FCI equations the operator Ĉ and the
energy E become functions of λ and can be expanded as the power series:

Ĉ(λ) = Ĉ(0) + λĈ(1) + λ2Ĉ(2) + · · ·

E(λ) = E(0) + λE(1) + λ2E(2) + · · ·

Inserting these expansions to the FCI equations one can easily show that:

Ĉ(0) = 0

E(0) + E(1) = 〈Φ0|ĤΦ0〉 = EHF

E(2) = 〈Φ0|Ŵ Ĉ(1)Φ0〉

Ĉ(1) =
∑
a<b

∑
r<s

〈ab||rs〉
εa + εb − εr − εs

êrsab

where 〈pq||rs〉=〈pq|rs〉−〈pq|sr〉 stands for the antisymmetrized two-electron
integral and

〈pq|rs〉 =

∫ ∫
φ∗p(~r1) φ

∗
q(~r2)

1

|~r1 − ~r2|
φr(~r1) φs (~r2) dτ1dτ2



MP Theory (MPPT lub MBPT), the third, last slide

Inserting the Ĉ(1) operator into the expression for E(2) we obtain:

E(2) =
∑
a<b

∑
r<s

|〈ab||rs〉|2

εa + εb − εr − εs
This is the expression for the MP2 energy - the simplest and most important

correlation energy expression.

The MP2 and higher-order MP energies are size-consistent and size-extensive

MP2 theory was introduced by physicists - Møller and Plesset in 1930, but
higher-order ones by quantum chemists: MP3 - by Bartlett i Silver in 1974,
MP4 - Wilson and Silver in 1979, MP5 by Kucharski and Bartlett in 1986 r.

Theory Operator Ĉ Scaling Error FH Error H2O

MP2 Ĉ2 n5 7.8 13.0

MP3 Ĉ2 n6 5.4 7.2

MP4 -E(4)(Ĉ3) Ĉ1, Ĉ2 n6 2.8 4.4

MP4 Ĉ1, Ĉ2, Ĉ3 n7 -0.3 0.9

MP5 Ĉ1, Ĉ2, Ĉ3 n8 0.8 0.7

MP6 Ĉ1, Ĉ2, Ĉ3, Ĉ4 n9 0.2 0.1



Coupled-cluster (CC) theory - Coester-Kümmel-Cizek theory

In some cases the MP theory may be divergent. Thus, we need a non-
perturbative theory better than CI. CC theory is the desired solution.

CI theory is not extensive since the operator 1 + Ĉ is not extensive.

It turns out, that the logarithm of the 1 + Ĉ operator is extensive! The main
idea of the CC theory is that we do not compute Ĉ but directly T̂ = ln(1+Ĉ).

T̂ = ln(1 + Ĉ) = Ĉ −
1

2
Ĉ2 +

1

3
Ĉ3 + · · ·

T̂ is well defined because this series is always convergent (since ĈN+1 = 0).

1 + Ĉ = exp(T̂ ) = 1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + · · ·

Obviously

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂N =
∑
ar

tar ê
r
a +

∑
a<b

∑
r<s

tabrs ê
rs
ab + · · ·+ T̂N

Since Ψ = (1 + Ĉ) Φ0 we can write

Ψ = eT̂ Φ0

This is the exponential form of the wave function (the “exponential Ansatz”)



Coupled-cluster theory, continued

Inserting the wave function eT̂ Φ0 into the Schrödinger equation we get:

(Ĥ − E) eT̂ Φ0 = 0

Multiplying by e−T̂ we further obtain:

e−T̂ (Ĥ − E) eT̂ Φ0 = 0

This equation is solved using the Galerkin-Pietrov method, i.e. by projecting
it on all excited determinants ΦI. One obtains then:

〈ΦI|e−T̂ĤeT̂ Φ0〉 = 0

All levels of the CC theory are size-consistent and size-extensive. The most
important levels are CCSD (T̂ = T̂1+T̂2) and CCSD(T) when the contribution
of triple excitations (T̂3) is included via the MP4 expression and added to the
CCSD energy (the so called “gold standard” of quantum chemistry).

Theory Operator T̂ Scaling Error FH Error H2O

CCD T̂2 n6 3.76 5.01

CCSD T̂1+T̂2 n6 3.01 4.12

CCSD(T) T̂1+T̂2, T̂3 n7 0.40 0.72

CCSDT T̂1+T̂2+T̂3 n8 0.27 0.53

CCSDTQ T̂1+T̂2+T̂3+T̂4 n10 0.02 0.02



Multi-reference configuration interaction theory - MRCI

One starts by computing the MCSCF wave function

Ψ0 =
∑
L

cL ΦL

and subsequently includes all single and double excitations (for the MRCISD
theory) from each reference determinant ΦL:

Ψ = Ψ0 +
∑
L

ĈL ΦL,

(the operator ĈL generates excitations form the determinant ΦL).

We include each Slater determinant only once and diagonalize the Hamiltonian
in the basis such obtained (without re-optimization of orbitals).

The MRCISD energies are not size-consistent but are often very accurate.

The MRCISD method is particularly suitable for for the study of excited states

and for the reactive potential energy surfaces.

MRCISD calculations are expensive and difficult to converge.


