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Introduction
First-order molecular properties can be obtained either as first derivatives of the energy ex-
pression with respect to the perturbation, or as an expectation value of the perturbing op-
erator. Coupled Cluster (CC) wave functions do not fulfill the Hellmann-Feynman theorem,
therefore those two approaches applied to coupled cluster theory lead to different results.
Most practical progress has been made for the derivative method, which is naturally con-
nected to the CC gradients (see e.g. Ref. [1]), although many theoretical works appeared,
which deal with the expectation value approach and its extensions (see e.g. Ref. [2] for a
critical review). In this contribution an efficient implementation of the first-order properties
and one-electron density matrices is presented, which is based on the expectation value
approach at the CCSD level of theory.

Theory
General equations
The average value of an operator X, in a state described by the wave function Ψ is given by
the equation,

X̄ =
〈Ψ|XΨ〉

〈Ψ|Ψ〉
. (1)

In the case of coupled cluster theory one inserts in Eq. (1) the CC ansatz for the wave func-
tion, Ψ = eTΦ, which results in the following expression,

X̄ =
〈Φ|eT †

XeTΦ〉

〈Φ|eT †
eTΦ〉

. (2)

The practical use of Eq. (2) has been hampered for a long time by the presence of powers of
the deexcitation operator T †, which results in an infinite series of multiple commutators of T

and T †, when the r.h.s. of Eq. (2) is written in an explicitly connected form.
A solution of the problem of the infinite series was proposed some time ago by Jeziorski and
Moszynski [3]. This solution relies on the use of a new excitation operator S, defined through
the equation,

eSΦ =
eT †

eTΦ

〈Φ|eT †
eTΦ〉

. (3)

Eq. (3) contains mostly disconnected terms and it is not obvious that S is a connected oper-
ator. It can be shown, however, that S satisfies the following linear equation [3],

〈δT | e−T e−T †
S̃ eT †

eT 〉 = 〈δT | T̃ − e−T T̃ † eT〉, (4)

where T̃ = T1 + 2T2 + 3T3 + . . . and S̃ = S1 + 2S2 + 3S3 + . . ., and 〈A|B〉
.
= 〈AΦ|BΦ〉. Both

sides of Eq. (4) can be expressed as a finite series of nested commutators, which shows that
S is connected, provided – of course – that T is connected itself.
With the operator S defined, the explicitly connected expansion of Eq. (2) can be written as
follows [3]:

X̄ = 〈eS|e−TXeT 〉 = 〈eS†
e−TXeTe−S†

〉. (5)

CCSD equations
For a particular case of CCSD theory (T = T1+T2) and a one-electron operator X the formula
for the expectation value takes the following form,

X̄ = 〈X〉 + 〈S1|X〉 + 〈XT1〉 + 〈S2|[X,T2]〉 + 〈S1|[X,T2]〉 + 〈S1|[X,T1]〉 + 〈S2|[[X,T1], T2]〉

+
1

2
〈S2

1|[X,T2]〉 +
1

2
〈S1S2|[[X,T2], T2]〉 +

1

2
〈S1|[[X,T1], T1]〉 +

1

2
〈S3|[[X,T2], T2]〉

+
1

2
〈S2

1|[[X,T1], T2]〉 +
1

12
〈S3

1|[[X,T2], T2]〉. (6)

Most of those terms contribute for the first time in a high W order (W denotes the HF fluctu-
ation potential) and can be neglected.

The S operator can be expressed through the T and T † operators using Eq. (4). The leading
terms for S at the CCSD level of theory are [4],

S[1] = T, (7)
S[2] = P̂1([T

†
1 , T2]),

S[3] = P̂1(
1

2
[[T †

1 , T1], T1] + [[T †
2 , T2], T1]) + P̂2(

1

2
[[T †

2 , T2], T2] + [[T †
1 , T2], T1]) +

1

2
P̂3([[T

†
1 , T2], T2]).

The formula (6) with the S operator truncated to terms of 3rd T order will be denoted as
XCCSD[3]. It should be noted that this formula does not contain all O(W 3) terms (e.g. the
contribution from 〈S2|[X,T3]〉 is missing because of the T operator is truncated to double ex-
citations). It can be shown that triples contributions of the O(W 3) order can be eliminated
from Eq. (5). The resulting formula, rigorously correct through the O(W 3) order [3], is given
below,

X̄resp(3) = 〈X〉 + 〈T2|[X,T2]〉 + 2 (〈T2|[W,C1]〉 + 〈T2|[[W,C1], T2]〉) . (8)
Here C1 is the coupled Hartree-Fock (CHF) operator defined by the equation

〈δT1|X + [H,C1 − C
†
1]〉 = 0. (9)

Technical details
The one-electron densities can be obtained from Eqs. (6) and (8) by replacing the X oper-
ator by the orbital substitution operator Ep

q . The orbital expressions for Eqs. (6), (7), and (8)
were derived and programmed using the local automatic program and implemented into the
MOLPRO package. The calculation of all commutators in Eqs. (6)–(8) can be effectively fac-
torized, so that the most expensive contributions (in terms of the CPU time) scale as O(o3v3),
therefore the calculation of first-order properties from XCCSD[3] and X̄resp(3) density matri-
ces requires only a small additional computational effort (in the derivative method one also
needs the Λ vector, with the cost niter ×O(o2v4)).
The electrostatic interaction energy of monomers A and B was calculated from the formula

E
(1)
elst =

∫ ∫
ρA(r1)ρB(r2)v(r1, r2)dr1dr2, (10)

where ρA and ρB are one-electron densities of monomers A and B and v(r1, r2) is a general-
ized interaction potential,

v(r1, r2) =
1

r12
−

1

NA

∑

α

Zα

rα2
−

1

NB

∑

β

Zβ

rβ1
+

1

NANB

∑

α

∑

β

ZαZβ

Rαβ

. (11)

Results
The new methods were tested by performing the calculations of dipole and quadrupole mo-
ments and electrostatic energies of various molecules. Details of calculations can be found
in Ref. [5].

Table 1:
Dipole and quadrupole moments for HF and BH molecules. The results of approximate
calculations are given as absolute errors in respect to FCI. All values in a.u.

FCI δSCF δXCCSD[3] δX̄resp(3) δnonrel
CCSD δrel

CCSD δnonrel
CCSD(T) δrel

CCSD(T)

HF, aug-cc-VDZ
µ –0.7025 –0.0573 0.0108 –0.0040 –0.0006 –0.0070 0.0013 –0.0009
Θ 1.6959 0.0387 –0.0026 0.0071 0.0040 0.0060 –0.0023 0.0006

BH, aug-cc-VTZ
µ 0.543 0.143 0.017 –0.016 0.013 0.010 0.002 0.002
Θ –2.334 –0.345 0.022 0.017 –0.005 –0.028 0.004 –0.007

FCI results for hydrogen fluoride were taken from A. Halkier et al., J. Chem. Phys. 110, 734 (1999).

Table 2:
Quadrupole moment of benzene (in a.u.) in several basis sets. The experimental quadrupole
moment of benzene is equal to −6.31 ± 0.27 a.u.

Basis set SCF XCCSD[3] X̄resp(3) CCSDnonrel CCSDrel CCSD(T)nonrel CCSD(T)rel
aug-cc-pVDZ’ –6.857 –5.859 –5.713 –5.849 –5.854 –5.722 –5.739
aug-cc-pVDZ –6.899 –5.916 –5.829 –5.932 –5.958 –5.816 –5.840
aug-cc-pVTZ –6.645 –6.025 –5.864 –5.989 –5.983 –5.834 –5.855
aug-cc-pVQZ –6.614 –6.065 –5.887 –6.017 - - -

Table 3:
Electrostatic energies of various van der Waals complexes calculated from one-electron
densities originating from various post-HF approximations. In the first line the HF
electrostatic energy is presented. For the post-HF methods we present the total correlation
contribution ǫ

(1)
elst. Global minimum geometries were used in all cases but the azulene dimer.

All values in cm−1.

method/complex Ar2 (H2O)2 (CO)2 He–H2O (Et)2 (Bz)2 (Az)2
SCF –42.70 –2334.12 –82.95 –7.71 –627.62 –865.78 –1833.01
MP2 –4.62 70.35 –50.75 –1.30 99.07 4.10 21.90
CCSDnonrel –1.88 114.11 –34.63 –1.05 105.82 79.28 103.25
CCSDrel –1.73 107.83 –29.88 –0.90 100.77 - -
XCCSD[3] –2.01 125.47 –42.09 –1.25 111.33 89.69 128.28
X̄resp(3) –1.62 111.36 –35.34 –0.92 117.00 143.31 226.77
SAPT –2.32 102.26 –31.94 –0.63 89.60 - -

Abbreviations used in Table: Et – ethyne, Bz – benzene, Az – azulene. Basis sets used: aug-cc-pV5Z/mb for Ar2, aug-cc-pVTZ/mb
for (H2O)2 and (CO)2, aug-cc-pVTZ for (Et)2, aug-cc-pVTZ’ for (Bz)2, aug-cc-pVDZ’ for (Az)2. (mb denotes midbond functions).

“SAPT” denotes the sum of corrections: E
(120)
elst,resp.

+ E
(102)
elst,resp.

+ E
(130)
elst,resp.

+ E
(103)
elst,resp.

.

The ǫ
(1)
elst correction for the benzene dimer changes sign for a distance close to the global minimum.

Summary
•New one-electron CCSD-type density matrices were derived and implemented into the

MOLPRO suite of programs.
•Test calculations show that the XCCSD[3] and X̄resp(3) methods perform as well as deriva-

tive CCSD.
•From the theoretical point of view the X̄resp(3) method should be preferred, although

XCCSD[3] performs surprisingly well.
•The computational cost of both new methods is two times smaller than the cost of derivative

CCSD.
•Possible extensions of the expectation value method with the S operator:

– Second-order properties were formulated in Ref. [4] and further investigated in Ref. [6].
– The extension of the new method to include triples excitations, developed theoretically in

Ref. [3], is planned in the near future.
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