***,He-H2 correlated electrostatics from Molpro memory,4,m ! Thresholds should be set somewhat tighter than defaults ! if you calculate intermolecular interaction energies: gthresh,twoint=1.e-15,energy=1.e-9,coeff=1.e-6 ! minimal thresholds good for 2002.6 (thanks to Song Huajie ) - changed on web 24.09.2003 !gthresh,twoint=1.e-15,energy=1.e-7,coeff=1.e-6 ! this works OK with 2002.7 ! just a small test basis basis=avdz ! Set geometry r=4.0 bohr rhh=1.4 bohr geometry={ he,, 0., 0. , r he h1,, -rhh/2, 0. , 0. h h2,, rhh/2, 0. , 0. h} ! Nuclear repulsion term (only necessary for E(100)) inr=2*2/sqrt((rhh/2)**2+r**2) ! Choose the method(s): method=[ccsd] ! available methods: ccsd,qcisd,mp2 ! For the final table: Term=['E(100)','E(1c0)','E(10c)','E(1cc)','E(1)(total)','E(1)(corr)'] do i=1,#method ! A MONOMER A MONOMER A MONOMER A MONOMER A MONOMER A MONOMER A MONOMER ! Do SCF for the A monomer (of course with the ghost functions on the monomer B) scfa=2110.2 ! here SCF results for A will be saved dummy,h1,h2 ! Accuracy of SCF should also be set tighter than default: hf;accu,13;save,scfa ! Use MATROP to calculate the effective potential for the monomer A: matrop load,EPOT ! read the bare potential for A (v_A) save,EPOT,5703.2,triang ! save the bare potential for A in the record 5703.2 ! (it will be overwritten in the calculations for the monomer B) load,DEN,DEN,scfa ! read the SCF density for A coul,J,DEN ! calculate the Coulomb operator with the SCF A density add,WA,1,EPOT,2,J ! calculate the effective potential for A save,WA,5701.2,triang ! and save it in the record 5701.2 ! Calculate the correlated density for the monomer A ! and save it to the record 5051.2 $method(i);core,0;cphf,1 expec save,density=5051.2 if($method(i).eq.CCSD.and.$version.lt.2002.5) then data,copy,5050.2,5051.2 ! with relaxation contribution (better) data,copy,5040.2,5041.2 ! nonrelaxed (worse, but can be ! calculated with frozen core) endif ! B MONOMER B MONOMER B MONOMER B MONOMER B MONOMER B MONOMER B MONOMER dummy,he scfb=2111.2 ! here SCF results for B will be saved hf;accu,13;save,scfb ! Use MATROP to calculate the effective potential for the monomer B: matrop load,EPOT load,DEN,DEN,scfb coul,J,DEN add,WB,1,EPOT,2,J save,WB,5702.2,triang ! Calculate the correlated density for the monomer B ! and save it to the record 5052.2 $method(i);core,0;cphf,1 expec save,density=5052.2 if($method(i).eq.CCSD.and.$version.lt.2002.5) then data,copy,5050.2,5052.2 data,copy,5040.2,5042.2 endif ! CALCULATION of the ELECTROSTATIC ENERGY ! this is the begin of MATROP if($method(i).eq.CCSD.and.$version.lt.2002.5) then matrop load,TOTDENA,triang,5051.2 ! read the correlated density for A load,TOTDENB,triang,5052.2 ! read the correlated density for B load,WA,triang,5701.2 ! read the effective potential for A load,WB,triang,5702.2 ! read the effective potential for B load,DENA,DEN,scfA ! read the SCF density for A load,DENB,DEN,scfB ! read the SCF density for B add,CDENA,1,TOTDENA,-1,DENA ! calculate the correlated part of density for A add,CDENB,1,TOTDENB,-1,DENB ! calculate the correlated part of density for B ! calculate E(100)elst (just for check with SAPT) ! in two ways (see below) load,EPOT ! load bare potential for monomer B trace,e100B,DENA,EPOT trace,e100A,DENB,WA load,EPOT,triang,5703.2 ! load bare potential for monomer A trace,e100A1,DENB,EPOT trace,e100B1,DENA,WB ! (just for check: the trace of the SCF density should be equal to ! the number of electrons and the trace of the correlated part should be 0) load,S ! load the overlap matrix trace,na,DENA,S trace,nb,DENB,S trace,nap,CDENA,S trace,nbp,CDENB,S ! The main point - calculation of the correlated electrostatics: trace,e1n0,CDENA,WB trace,e10n,CDENB,WA coul,J,CDENA trace,e1nn,J,CDENB ! this is the end of MATROP else ! dependent on molpro version matrop load,TOTDENA,den,5051.2 ! read the correlated density for A load,TOTDENB,den,5052.2 ! read the correlated density for B load,WA,triang,5701.2 ! read the effective potential for A load,WB,triang,5702.2 ! read the effective potential for B load,DENA,DEN,scfA ! read the SCF density for A load,DENB,DEN,scfB ! read the SCF density for B add,CDENA,1,TOTDENA,-1,DENA ! calculate the correlated part of density for A add,CDENB,1,TOTDENB,-1,DENB ! calculate the correlated part of density for B ! calculate E(100)elst (just for check with SAPT) ! in two ways (see below) load,EPOT ! load bare potential for monomer B trace,e100B,DENA,EPOT trace,e100A,DENB,WA load,EPOT,triang,5703.2 ! load bare potential for monomer A trace,e100A1,DENB,EPOT trace,e100B1,DENA,WB ! (just for check: the trace of the SCF density should be equal to ! the number of electrons and the trace of the correlated part should be 0) load,S ! load the overlap matrix trace,na,DENA,S trace,nb,DENB,S trace,nap,CDENA,S trace,nbp,CDENB,S ! The main point - calculation of the correlated electrostatics: trace,e1n0,CDENA,WB trace,e10n,CDENB,WA coul,J,CDENA trace,e1nn,J,CDENB ! this is the end of MATROP endif ! dependent on molpro version ! Now extract the results: ! the SCF-correlated part (e10n) and the correlated-SCF part (e1n0) are ready ! the correlated-correlated part: e1nn=2*e1nn ! the SCF-SCF part (calculated in two ways, both should give the same number!) e100=INR+e100A+e100B e100p=INR+e100A1+e100B1 if(abs(e100-e100p).gt.1.e-8) then text, Warning: SCF check failed,$e100,$e100p endif ! the total correlation contribution: e1c=e10n+e1n0+e1nn ! the total electrostatic contribution: e1t=e100+e1c ! hartree - > Kelvin e100k=e100*tokelvin e1n0k=e1n0*tokelvin e10nk=e10n*tokelvin e1nnk=e1nn*tokelvin e1ck=e1c*tokelvin e1tk=e1t*tokelvin ! hartree - > cm-1 e100c=e100*tocm e1n0c=e1n0*tocm e10nc=e10n*tocm e1nnc=e1nn*tocm e1cc=e1c*tocm e1tc=e1t*tocm ! Make the final table: ! final results in microhartrees: n=6 skala=10**n eau(1)=e100*skala eau(2)=e1n0*skala eau(3)=e10n*skala eau(4)=e1nn*skala eau(5)=e1t*skala eau(6)=e1c*skala eke(1)=e100k eke(2)=e1n0k eke(3)=e10nk eke(4)=e1nnk eke(5)=e1tk eke(6)=e1ck ecm(1)=e100c ecm(2)=e1n0c ecm(3)=e10nc ecm(4)=e1nnc ecm(5)=e1tc ecm(6)=e1cc text, FINAL RESULTS table,Term,eau digits,,6 title, Electrostatic interaction energy in the $method approximation title, energies in hartree/10^$n table,Term,eke digits,,6 title, Electrostatic interaction energy in the $method approximation title, energies in Kelvin table,Term,ecm digits,,6 title, Electrostatic interaction energy in the $method approximation title, energies in cm^-1 enddo